Welcome!

Machine Learning Authors: Elizabeth White, Darren Anstee, Progress Blog, Liz McMillan, Dan Blacharski

Related Topics: @DXWorldExpo, @CloudExpo, @ThingsExpo

@DXWorldExpo: Blog Feed Post

Golden State Warriors Analytics Exercise | @BigDataExpo #BigData #Analytics

Identifying and quantifying variables that might be better predictors of performance

For a recent University of San Francisco MBA class, I wanted to put my students in a challenging situation where they would be forced to make difficult data science trade-offs between gathering data, preparing the data and performing the actual analysis.

The purpose of the exercise was to test their ability to “think like a data scientist” with respect to identifying and quantifying variables that might be better predictors of performance. The exercise would require them to:

  • Set up a basic analytic environment
  • Gather and organize different data sources
  • Explore the data using different visualization techniques
  • Create and test composite metrics by grouping and transforming base metrics
  • Create a score or analytic model that supports their recommendations

I gave them the links to 10 Warrior games (5 regulation wins, 3 overtime losses and 2 regulation losses) as their starting data set.

I then put them in a time boxed situation (spend no more than 5 hours on the exercise) with the following scenario:

You have been hired by the Golden State Warriors coaching staff to review game performance data to identify and quantify metrics that predict a Warriors victory

Here were the key deliverables for the exercise:

  1. I wanted a single, easy-to-understand slide with in-game and/or player recommendations.
  2. I wanted a break out of how they spent their 5 hours across the following categories:
  • Setting up your analytic environment
  • Gathering and organizing the data
  • Visualizing and analyzing the data
  • Creating the analytic models and recommendations
  1. Finally, I wanted back-up information (data, visualizations and analytics) in order to defend their in-game and/or player recommendations.

Exercise Learnings
Here is what we learned from the exercise:

Lesson #1: It’s difficult to not spend too much time gathering and cleansing data. On average, the teams spent 50% to 80% of their time gathering and preparing the data. That only left 10% to 20% of their time for the actual analysis. It’s really hard to know when “good enough” is really “good enough” when it comes to gathering and preparing the data.

Lesson #2: Quick and dirty visualizations are critical in understanding what is happening in the data and establishing hypotheses to be tested. For example, the data visualization in Figure 1 quickly highlighted the importance of offensive rebounds and three-point shooting percentage in the Warriors’ overtime losses.

Figure 1: Use Quick Data Visualizations to Establish Hypotheses to Test

Lesson #3: Different teams came up with different sets of predictive variables. Team #1 came up with Total Rebounds, Three-Point Shooting %, Fast Break Points and Technical Fouls as the best predictors of performance. They tested a hypothesis that the more “aggressive” the Warriors played (as indicated by rebounding, fast break points and technical fouls), the more likely they were to win (see Figure 2).

Figure 2: Testing Potential Predictive Variables

Team #2 came up with the variables of Steals, Field Goal Percentage and Assists as the best predictors of performance (see Figure 3).

Figure 3: ANOVA Table for Team #2

Team #2 then tested their analytic models against two upcoming games: New Orleans and Houston. Their model accurately predicted not only the wins, but the margin of victory fell within their predicted ranges. For example in the game against New Orleans, their model predicted a win by 21 to 30 points, in which the Warriors actually won by 22 (see Figure 4).

Figure 4: Predicting Warriors versus New Orleans Winner

And then in the Houston game, their model predicted a win by 0 to 10 points (where 0 indicated an overtime game), and the Warriors actually won that game by 9 points (see Figure 5).

Figure 5: Predicting Warriors versus Houston Winner

I think I’m taking Team #2 with me next time I go to Vegas!

By the way, in case you want to run the exercise yourself, Appendix A lists the data sources that the teams used for the exercise. But be sure to operate under the same 5-hour constraint!

Summary
A few other learnings came out of the exercise, which I think are incredibly valuable for both new as well as experienced data scientists:

  • Don’t spend too much time trying to set up the perfect analytic environment. Sometimes a simple analytic environment (spreadsheet) can yield consider insights with little effort.
  • Start with small data sets (10 to 20GB). That way you’ll spend more time visualizing and analyzing the data and less time trying to gather and prepare the data. You’ll be able to develop and test hypotheses much more quickly with the smaller data sets running on your laptop, which one can stress test later using the full data set.
  • Make sure that your data science team collaborates closely with business subject matter experts. The teams that struggled in the exercise were the teams that didn’t have anyone who understood the game of basketball (not sure how that’s even possible, but oh well).

One of the many reasons why I love teaching is the ability to work with students who don’t yet know what they can’t accomplish. In their eyes, everything is possible. Their fresh perspectives can yield all sorts of learnings, and not just for them. And yes, you can teach an old dog like me new tricks!

Appendix A:  Exercise Data Sources
Extract “Team Stats” from the Warriors Game Results website: http://www.espn.com/nba/team/schedule/_/name/gs.  Listed below is a cross-section of games from which you may want to use to start your analysis.

Wins

Rockets 1/20/17: http://www.espn.com/nba/matchup?gameId=400900067

Thunder 1/18/17: http://www.espn.com/nba/matchup?gameId=400900055

Cavaliers 1/16/17: http://www.espn.com/nba/matchup?gameId=400900040

Raptors 11/16/16: http://www.espn.com/nba/matchup?gameId=400899615

Trailblazers 1/2/17:  http://www.espn.com/nba/matchup?gameId=400900139

Overtime (Losses)

Houston 12/1/16: http://www.espn.com/nba/matchup?gameId=400899436

Grizzles 1/6/17: http://www.espn.com/nba/matchup?gameId=400899971

Sacramento 2/4/17: http://www.espn.com/nba/matchup?gameId=400900169

Losses

Spurs 10/25/16: http://www.espn.com/nba/boxscore?gameId=400899377

Lakers 11/4/16: http://www.espn.com/nba/matchup?gameId=400899528

Cavaliers 12/25/16: http://www.espn.com/nba/matchup?gameId=400899899

Note: You are welcome to gather team and/or individual stats from any other games or websites that you wish.

The post Golden State Warriors Analytics Exercise appeared first on InFocus Blog | Dell EMC Services.

Read the original blog entry...

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business”, is responsible for setting the strategy and defining the Big Data service line offerings and capabilities for the EMC Global Services organization. As part of Bill’s CTO charter, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He’s written several white papers, avid blogger and is a frequent speaker on the use of Big Data and advanced analytics to power organization’s key business initiatives. He also teaches the “Big Data MBA” at the University of San Francisco School of Management.

Bill has nearly three decades of experience in data warehousing, BI and analytics. Bill authored EMC’s Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements, and co-authored with Ralph Kimball a series of articles on analytic applications. Bill has served on The Data Warehouse Institute’s faculty as the head of the analytic applications curriculum.

Previously, Bill was the Vice President of Advertiser Analytics at Yahoo and the Vice President of Analytic Applications at Business Objects.

@CloudExpo Stories
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, led attendees through the exciting evolution of the cloud. He looked at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering m...
Mobile device usage has increased exponentially during the past several years, as consumers rely on handhelds for everything from news and weather to banking and purchases. What can we expect in the next few years? The way in which we interact with our devices will fundamentally change, as businesses leverage Artificial Intelligence. We already see this taking shape as businesses leverage AI for cost savings and customer responsiveness. This trend will continue, as AI is used for more sophistica...
The “Digital Era” is forcing us to engage with new methods to build, operate and maintain applications. This transformation also implies an evolution to more and more intelligent applications to better engage with the customers, while creating significant market differentiators. In both cases, the cloud has become a key enabler to embrace this digital revolution. So, moving to the cloud is no longer the question; the new questions are HOW and WHEN. To make this equation even more complex, most ...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
Blockchain is a shared, secure record of exchange that establishes trust, accountability and transparency across business networks. Supported by the Linux Foundation's open source, open-standards based Hyperledger Project, Blockchain has the potential to improve regulatory compliance, reduce cost as well as advance trade. Are you curious about how Blockchain is built for business? In her session at 21st Cloud Expo, René Bostic, Technical VP of the IBM Cloud Unit in North America, discussed the b...
The past few years have brought a sea change in the way applications are architected, developed, and consumed—increasing both the complexity of testing and the business impact of software failures. How can software testing professionals keep pace with modern application delivery, given the trends that impact both architectures (cloud, microservices, and APIs) and processes (DevOps, agile, and continuous delivery)? This is where continuous testing comes in. D
SYS-CON Events announced today that Synametrics Technologies will exhibit at SYS-CON's 22nd International Cloud Expo®, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Synametrics Technologies is a privately held company based in Plainsboro, New Jersey that has been providing solutions for the developer community since 1997. Based on the success of its initial product offerings such as WinSQL, Xeams, SynaMan and Syncrify, Synametrics continues to create and hone in...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
As you move to the cloud, your network should be efficient, secure, and easy to manage. An enterprise adopting a hybrid or public cloud needs systems and tools that provide: Agility: ability to deliver applications and services faster, even in complex hybrid environments Easier manageability: enable reliable connectivity with complete oversight as the data center network evolves Greater efficiency: eliminate wasted effort while reducing errors and optimize asset utilization Security: imple...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
Companies are harnessing data in ways we once associated with science fiction. Analysts have access to a plethora of visualization and reporting tools, but considering the vast amount of data businesses collect and limitations of CPUs, end users are forced to design their structures and systems with limitations. Until now. As the cloud toolkit to analyze data has evolved, GPUs have stepped in to massively parallel SQL, visualization and machine learning.
The 22nd International Cloud Expo | 1st DXWorld Expo has announced that its Call for Papers is open. Cloud Expo | DXWorld Expo, to be held June 5-7, 2018, at the Javits Center in New York, NY, brings together Cloud Computing, Digital Transformation, Big Data, Internet of Things, DevOps, Machine Learning and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding busin...
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...
In his session at 21st Cloud Expo, Michael Burley, a Senior Business Development Executive in IT Services at NetApp, described how NetApp designed a three-year program of work to migrate 25PB of a major telco's enterprise data to a new STaaS platform, and then secured a long-term contract to manage and operate the platform. This significant program blended the best of NetApp’s solutions and services capabilities to enable this telco’s successful adoption of private cloud storage and launching ...
In his general session at 21st Cloud Expo, Greg Dumas, Calligo’s Vice President and G.M. of US operations, discussed the new Global Data Protection Regulation and how Calligo can help business stay compliant in digitally globalized world. Greg Dumas is Calligo's Vice President and G.M. of US operations. Calligo is an established service provider that provides an innovative platform for trusted cloud solutions. Calligo’s customers are typically most concerned about GDPR compliance, application p...
In a recent survey, Sumo Logic surveyed 1,500 customers who employ cloud services such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP). According to the survey, a quarter of the respondents have already deployed Docker containers and nearly as many (23 percent) are employing the AWS Lambda serverless computing framework. It’s clear: serverless is here to stay. The adoption does come with some needed changes, within both application development and operations. Tha...
Digital transformation is about embracing digital technologies into a company's culture to better connect with its customers, automate processes, create better tools, enter new markets, etc. Such a transformation requires continuous orchestration across teams and an environment based on open collaboration and daily experiments. In his session at 21st Cloud Expo, Alex Casalboni, Technical (Cloud) Evangelist at Cloud Academy, explored and discussed the most urgent unsolved challenges to achieve f...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...