Machine Learning Authors: Yeshim Deniz, Pat Romanski, Jason Bloomberg, William Schmarzo, Stackify Blog

Related Topics: Machine Learning , @CloudExpo, @DXWorldExpo

Machine Learning : Blog Post

Using Predictive Analytics to Avoid Hospital Layoffs | @BigDataExpo #ML #BigData #Analytics

How predictive analytics is optimizing patient pathways within hospitals

Sanjeev Agrawal 150x150 Using Predictive Analytics to Avoid Hospital Layoffs

Using Predictive Analytics to Avoid Hospital Layoffs
By Sanjeev Agrawal, President and Chief Marketing Officer, LeanTaaS iQueue

It seems as if news about another hospital laying off workers - or worse, closing - hits the news every day; at last count, 21 hospitals stopped treating patients in 2016. Hospitals and healthcare systems across the country, including some of the largest, laid off thousands of employees. In November 2016 alone, 13 providers eliminated more than 1,000 jobs.

In September, HCCA's Vice President of Marketing Kathleen Johnson said, "The actions taken recently are in accordance with our planned and ongoing strategic realignment of the hospital's operations. We continue to streamline operations, improve efficiencies and healthcare delivery to our community."

In October, UC Irvine Health spokesman John Murray said, "The layoffs are part of a multipronged approach to improving the health of the system. Before considering the layoffs, we looked for opportunities to reduce expenses as well as maximize potential revenue."

What's Going On?
Steep operating losses and severe budget shortfalls, forced by a rapidly changing landscape toward value-based reimbursements, are causing hospitals to consolidate operations as much as they can: merging operations, closing labs, reducing workers and finding every possible way to lower costs without affecting quality of care - all while continuing to meet the spiraling demand on the clinical side.

As the industry shifts to value-based care, hospitals and healthcare systems face increasing pressure to reduce their cost structures - a difficult challenge  - without affecting quality of care. For many, consolidation is the next step in the progression. But after the merger is completed and redundancies eliminated, the big question is "How do we make the most out of all these resources?"

Simply put, hospitals are under constant pressure to do more with less - in many cases, much more with much less. Every day, they face an operational paradox; scarce resources are both overbooked and underutilized within the same day. This leads to several undesirable outcomes: millions of dollars of unnecessary operational costs, long patient wait times, overworked staff and an insatiable appetite for expanding existing facilities or constructing entirely new ones.

Data to the Rescue
Electronic health records (EHRs), fueled by government regulations and incentives, are opening opportunities for operational efficiencies. In the past decade, hospitals have invested hundreds of millions of dollars in EHRs, business intelligence and Lean/Six Sigma initiatives. Now, CIOs are asking "How can we leverage all this data to reduce costs?"

In a CIO survey conducted earlier this year, IT optimization ranked as one of the top 10 areas of focus. "Call it performance, call it tech-based enabled improvement, call it optimization. Call it whatever the buzzword is, but [we're] trying to get more capability out of the investment we've made in the past few years in EHRs," said Todd Hollowell, COO of Impact Advisors.

EHRs capture every bit of information related to a patient: historical conditions, medications, treatments, everything. The goal is to give that information to whoever needs it, whenever they need it. An obvious use case is to give everyone, from physicians to pharmacists, a valuable "situational awareness" that avoids obvious waste such as duplicate lab tests, unnecessary lab orders, etc. But that's just the beginning. If you look at the enormous amount of data stored per patient (more than two terabytes), it is possible to build sophisticated interconnected systems that can provide much better situational awareness to everyone involved in the core patient pathways. One of the core ways to reduce costs is to maximize resource utilization and route care providers to the right place at the right time to reduce the length of stay and improve overall efficiency. Predictive analytics provides a scalable way to accomplish this.

Predictive Analytics Is the Answer
Historically, process improvement efforts in hospitals worked with small, historical snapshots of data from which the core operational issues were identified. From this, strategies were developed, implementation plans executed and the disciplines for continuous improvement were established. This was the best approach when all that was available was rear-view mirror data snapshots and Excel as the analytic engine of choice. Now, with the explosion of smart devices, computational power in the cloud, and the growing pervasiveness of data science and machine learning algorithms, an entirely different realm of operational optimization is suddenly possible.

Consider the following scenarios on how predictive analytics is already optimizing patient pathways within hospitals:

- Optimizing access to treatments such as chemotherapy: By looking at historical demand patterns and operational constraints, sophisticated forecasting algorithms can predict the daily volume and mix of patients and orchestrate appointment slots such that there are no "gaps" between treatments. This radically improves chair utilization, reduces patient wait times and decreases the overall cost of operations. Doing this without sophisticated data science is hard; for example, just arranging the order in which 70 patients can be slotted for their treatments in a 35-chair infusion center is a number exceeding 10^100. Trying to solve this problem with pen, paper or Excel is a pointless exercise.

- Operating rooms are key resources within the hospital: Study after study shows that OR utilization at most large hospitals is at best 50-60 percent. In most hospitals, operating rooms are allocated to surgeons using "blocks" - for simplicity, the blocks are often either half-day or full-day. Even the most prolific and productive surgeons often don't fully utilize the blocks they are given, and the process for reallocating blocks on a monthly basis or even for last-minute block swaps is cumbersome and manual. Using data science and machine learning, hospitals can monitor utilization, identify pockets for improvement, automatically reallocate underutilized blocks and improve overall operating room utilization. A 3-5 percent improvement in block utilization is worth $2 million per year for a surgical suite with just four operating rooms.

- Optimizing in-patient bed capacity utilization: In-patient bed capacity is a constraining bottleneck in most hospitals, yet virtually every hospital solves this problem with an arithmetic-based "huddle" approach that reviews the patient census from the overnight stay in each unit, adds known incoming patients, subtracts known discharges and then decides if the unit is flirting with the limits of its available capacity. This cycle repeats itself, often several times per day, with a planning horizon of the day at hand. On the other hand, Google completes the search bar while we are typing because it has analyzed millions of search terms similar to the one you are entering and automatically presents the four or five highest probability queries that you intend to submit. Imagine looking at each overnight patient, finding the 1,000 prior patients over the last two years who entered the hospital with a similar diagnostic or procedure code and reviewing their "flight path" through the hospital (i.e., number of days spent in each of the units prior to discharge); then, an aggregate probabilistic assessment of the likely occupancy of each unit could be developed. Not only would it provide a better answer for today, it would also help anticipate the evolving unit capacity situation over the next 5-7 days, leading to smarter operational decisions on transfers, elective surgery rescheduling, etc.

A similar machine learning approach can help orchestrate patient flows at clinics, labs, pharmacies and any unit within the hospital network that struggles with the operational paradox of being overbooked and underutilized at the same time.

Hospitals are starting to see gains from predictive analytics, especially on the operational side. OR block scheduling is an area where the ROI can be significant. UCHealth, the largest healthcare network in Colorado, deployed a mobile block swap system that lets surgeons request and release blocks via their smartphone. The system uses predictive analytics to identify blocks that can be swapped. Within three months of deployment, the network saw a 16 percent increase in utilization of the swapped blocks compared to average blocks. A "Smart Performance Tracker" continuously monitors OR utilization and produces actionable insights to make data-driven decisions about from whom to take block time away and to whom to give it, and a Smart Staffing module creates optimized monthly/quarterly OR staffing plans.

NewYork-Presbyterian's NCI-designated cancer center deployed predictive analytics to shape patient demand. The system uses data science to mine historical appointment data, understand traffic patterns and "level load" patients throughout the day, leading to an astounding 55 percent lower wait times at peak hours, 40 percent lower wait times overall and 17 percent higher patient volumes. Several other hospitals, including Stanford Health Care, Wake Forest, UCSF and more have seen significant gains with predictive analytics for infusion scheduling.

It's clear the challenges of 2016 will continue throughout 2017 and beyond. The role data, predictive analytics and machine learning can play in transforming how providers do more with less is equally clear.


Sanjeev Agrawal is president and chief marketing officer of LeanTaaS iQueue. Sanjeev was Google's first head of product marketing. Since then, he has had leadership roles at three successful startups: CEO of Aloqa, a mobile push platform (acquired by Motorola); VP Product and Marketing at Tellme Networks (acquired by Microsoft); and as the founding CEO of Collegefeed (acquired by AfterCollege). Sanjeev graduated Phi Beta Kappa with an EECS degree from MIT and along the way spent time at McKinsey & Co. and Cisco Systems. He is an avid squash player and has been named by Beckers Hospital Review as one of the top entrepreneurs innovating in Healthcare.

More Stories By LeanTaaS Blog

LeanTaaS is a Silicon Valley software company whose offerings rely on advanced data science to significantly improve the operational performance of hospitals and clinics. Using LeanTaaS iQueue in conjunction with their existing EHR's, healthcare institutions are developing optimized schedules that are tailored to each site and can rapidly reduce patient wait times and operating costs while increasing patient access and satisfaction, care provider satisfaction, and asset utilization.

@CloudExpo Stories
DevOpsSummit New York 2018, colocated with CloudEXPO | DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City. Digital Transformation (DX) is a major focus with the introduction of DXWorldEXPO within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of bus...
DXWordEXPO New York 2018, colocated with CloudEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
Cloud Expo | DXWorld Expo have announced the conference tracks for Cloud Expo 2018. Cloud Expo will be held June 5-7, 2018, at the Javits Center in New York City, and November 6-8, 2018, at the Santa Clara Convention Center, Santa Clara, CA. Digital Transformation (DX) is a major focus with the introduction of DX Expo within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive ov...
DXWorldEXPO | CloudEXPO are the world's most influential, independent events where Cloud Computing was coined and where technology buyers and vendors meet to experience and discuss the big picture of Digital Transformation and all of the strategies, tactics, and tools they need to realize their goals. Sponsors of DXWorldEXPO | CloudEXPO benefit from unmatched branding, profile building and lead generation opportunities.
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
@DevOpsSummit New York 2018, colocated with CloudEXPO | DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises - and delivering real results.
The dynamic nature of the cloud means that change is a constant when it comes to modern cloud-based infrastructure. Delivering modern applications to end users, therefore, is a constantly shifting challenge. Delivery automation helps IT Ops teams ensure that apps are providing an optimal end user experience over hybrid-cloud and multi-cloud environments, no matter what the current state of the infrastructure is. To employ a delivery automation strategy that reflects your business rules, making r...
DXWorldEXPO LLC announced today that Dez Blanchfield joined the faculty of CloudEXPO's "10-Year Anniversary Event" which will take place on November 11-13, 2018 in New York City. Dez is a strategic leader in business and digital transformation with 25 years of experience in the IT and telecommunications industries developing strategies and implementing business initiatives. He has a breadth of expertise spanning technologies such as cloud computing, big data and analytics, cognitive computing, m...
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
DXWorldEXPO LLC announced today that Kevin Jackson joined the faculty of CloudEXPO's "10-Year Anniversary Event" which will take place on November 11-13, 2018 in New York City. Kevin L. Jackson is a globally recognized cloud computing expert and Founder/Author of the award winning "Cloud Musings" blog. Mr. Jackson has also been recognized as a "Top 100 Cybersecurity Influencer and Brand" by Onalytica (2015), a Huffington Post "Top 100 Cloud Computing Experts on Twitter" (2013) and a "Top 50 C...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
Digital transformation is about embracing digital technologies into a company's culture to better connect with its customers, automate processes, create better tools, enter new markets, etc. Such a transformation requires continuous orchestration across teams and an environment based on open collaboration and daily experiments. In his session at 21st Cloud Expo, Alex Casalboni, Technical (Cloud) Evangelist at Cloud Academy, explored and discussed the most urgent unsolved challenges to achieve fu...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Daniel Jones is CTO of EngineerBetter, helping enterprises deliver value faster. Previously he was an IT consultant, indie video games developer, head of web development in the finance sector, and an award-winning martial artist. Continuous Delivery makes it possible to exploit findings of cognitive psychology and neuroscience to increase the productivity and happiness of our teams.
The standardization of container runtimes and images has sparked the creation of an almost overwhelming number of new open source projects that build on and otherwise work with these specifications. Of course, there's Kubernetes, which orchestrates and manages collections of containers. It was one of the first and best-known examples of projects that make containers truly useful for production use. However, more recently, the container ecosystem has truly exploded. A service mesh like Istio addr...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Evan Kirstel is an internationally recognized thought leader and social media influencer in IoT (#1 in 2017), Cloud, Data Security (2016), Health Tech (#9 in 2017), Digital Health (#6 in 2016), B2B Marketing (#5 in 2015), AI, Smart Home, Digital (2017), IIoT (#1 in 2017) and Telecom/Wireless/5G. His connections are a "Who's Who" in these technologies, He is in the top 10 most mentioned/re-tweeted by CMOs and CIOs (2016) and have been recently named 5th most influential B2B marketeer in the US. H...