Click here to close now.

Welcome!

AJAX & REA Authors: XebiaLabs Blog, Lori MacVittie, Ed Featherston, Elizabeth White, Cloud Best Practices Network

Related Topics: XML

XML: Article

An Introduction to JDOM Part 2 of 2

An Introduction to JDOM Part 2 of 2

This second of a two-part series on JDOM examines in greater detail what it takes to use JDOM to perform some common tasks. In particular, I'll illustrate how to create JDOM documents, read JDOM documents from various sources (including SAX and DOM), output to various sources, and how to use JDOM with XSLT.

The overview of JDOM discussed in Part 1 (XML-J, Vol. 2, issue 7) revealed that JDOM bridges the gap between inconsistencies in DOM parser APIs via adapters. It also takes SAX and DOM to the next level in terms of ease of use, by compensating for the weaknesses of these APIs when it comes to XML document manipulation.

Part 1 explored the JDOM API and the packages and classes that are most significant for developing in JDOM. The main components of a JDOM document that were defined in Part 1 are critical prerequisites for understanding this article.

Creating a JDOM Document
JDOM documents can be created in two ways - from scratch or from some other input source, such as an XML document, a series of SAX events, or a DOM document. First, we'll discuss how to create a JDOM document in memory from scratch, and then, in the next section, we'll address how to output that document in various different formats.

After we create a JDOM document and show how to output its content, we will demonstrate how to input an existing XML document, a series of SAX events, or a DOM document, and convert it into a JDOM document, which is the second option for creating a JDOM document.

Creating a JDOM Document in Memory
Let's begin by creating a JDOM document in memory, from scratch. Since JDOM was written with the Java developer in mind (keeping as close to Java standards as possible), creating a new JDOM document in memory is straightforward for Java developers.

To create a JDOM document in memory using the core JDOM classes, Document and Element from the org.jdom package, use the following code:

Document doc = new Document( new
Element("root-element")

.setText("Hello World!") );

This creates, in memory, a bare bones JDOM document and stores it in the variable doc. That's all there is to it. Next, we'll look at outputting this document to the screen, so we can see what it looks like in XML.

Outputting JDOM Documents
After creating a JDOM document, it can be output using one of three primary ways:

1. org.jdom.output.DOMOutputter: As a DOM document
2. org.jdom.output.SAXOutputter:  As a sequence of SAX events
3. org.jdom.output.XMLOutputter: As an XML document to a file or an output stream

As part of the org.jdom.output package, XMLOutputter outputs a JDOM document to an output stream, such as the screen, or to a file. Alternatively, the SAXOutputter or DOMOutputter classes, also of the org.jdom.output package, can be used to output the JDOM document as a series of SAX events or as a DOM document, respectively.

In Listing 1, we illustrate output using XMLOutputter to output to the standard output stream, System.out, which by default is the screen when running in a DOS/UNIX command window.

Using XMLOutputter
When a JDOM document is output as an XML document, it's output as one or two long lines of XML code unless you specify otherwise. This is fine if it's being sent to another application or system for processing, and is actually the most compact. However, it makes it very difficult to read and see the structure.

To format the XML output to improve readability - by humans, not computers - we can specify a couple of parameters when creating the XMLOutputter. The first parameter defines the level of indentation - usually as a sequence of spaces - and the second is a Boolean value that, if set to true, causes new lines to be added to the output.

Here's an example:

outputter = new XMLOutputter(" ",
true);
outputter.output(doc, System.out);

We use this approach in our HelloWorld example shown later in the article.

Note that since XMLOutputter contains methods to output a JDOM document to a java.io.OutputStream as well as to a java.io.Writer, you can use the same approach whether outputting to a file, an output stream (such as across a network), to the screen, or to any other form of Writer or OutputStream.

Other output methods in XMLOutputter allow you to output just parts of the JDOM document such as CDATA sections, comments, elements, entities, and processing instructions. We talked about each of these components in Part 1.

The JDOM document created as described in the last example will be output to the screen. The code required is in Listing 1.

To compile this file, first ensure that you have set up your Java environment correctly for use with JDOM. Your CLASSPATH must include the xerces.jar file found in the lib subdirectory of your JDOM distribution. The xerces.jar file should be followed in the CLASSPATH by the jdom.jar file from the build subdirectory of your JDOM distribution.

Next, to compile the HelloWorld.java file, type the following code:

javac HelloWorld.java

After the HelloWorld.java file compiles, run the HelloWorld application using:

java HelloWorld

This produces the following output:

<?xml version="1.0" encoding="UTF-8"?> <root-element>Hello World!</root-element>

The root-element tag is from the code defined in the HelloWorld.java file, specifically from the line that instantiates a new Element. Here is the code that defines the name of the new Element.

new Element("root-element")

The text "Hello World!" also was defined in the code in the HelloWorld.java file and by the call to the setText method. The following code defines the text for the root element:

new Element("root-element").setText("Hello World!")

As you can see, using JDOM, it's possible to produce perfectly valid XML output with little prior knowledge of XML. This was one of the original goals of JDOM.

Outputting Using DOMOutputter
We just saw how to output a JDOM document as an XML file. Using DOMOutputter, we can output a JDOM document as a DOM document. This is useful when interfacing with another application or system that expects a DOM document as its input.

The following lines of code show how to create and use DOMOutputter to output a JDOM document, doc.

DOMOutputter outputter = new DOMOutputter(); outputter.output( doc );

In addition to outputting JDOM documents, DOMOutputter also provides methods that allow you to output JDOM elements and attributes. See the JDOM API documentation for details.

Outputting Using SAXOutputter
We just saw how to output a JDOM document as an XML file and as a DOM document. The final way to output a JDOM document is as a sequence of SAX events. This is useful for interfacing with applications or components that handle a series of SAX events.

When constructing a SAXOutputter, you must specify a SAX content handler (actually an org.xml.sax.ContentHandler) as a minimum. You then have the option of specifying a SAX error handler (org.xml.sax.ErrorHandler), DTD handler (org.xml.sax.DTDHandler), and entity handler (org.xml.sax.EntityHandler) after you have created the SAXOutputter object.

The following lines of code show how to create and use SAXOutputter to output a JDOM document, doc.

SAXOutputter outputter = new SAXOutputter( contentHandler ); outputter.output( doc );

After creating a SAXOutputter object, you need to invoke the output() method to pass the JDOM document object you want to output to the outputter.

Inputting to JDOM Documents
Earlier in this article we saw how to create a JDOM document from scratch. Another way of creating a JDOM document is to read an XML document or input stream (using a SAX parser), or input a DOM document. Again, we will use an output stream to output the JDOM document.

To input an XML file, input stream, or DOM document as a JDOM document, use the SAXBuilder or DOMBuilder classes, respectively, from the org.jdom.input package.

Inputting Using SAXBuilder
Perhaps the most common means of building a JDOM document is to use SAXBuilder. SAXBuilder uses a SAX parser to parse an XML input file or input stream. Building a JDOM document using SAXBuilder is a two-step process.

In step one, you need to create a new instance of a SAXBuilder object. Next, invoke one of the build methods for reading the XML input and building a JDOM document object.

Four different constructors are available for creating a new SAXBuilder object, the primary one using the default SAX parser as determined by JAXP. Validation is turned off. It can be enabled and disabled after the construction of a SAXBuilder object by using the setValidation() method.

The other three constructors allow more control over whether or not validation is enabled or disabled and in choosing an alternate SAX parser.

After creating a SAXBuilder object, other methods are available that allow us to initialize it with a custom DTD handler, Entity resolver, XML filter, and error handler.

Once we have instantiated a new SAXBuilder object, we can use it to build a JDOM document. There are seven different publicly accessible build methods available.

The main differences between the seven build methods lie in where the XML input is to come from. It can come from a variety of sources, including one specified by a java.io.File, java.io.InputStream, java.io.Reader, a URI specified as a java.lang.String, or a java.net.URL.

SAX parsers tend to be the first choice over DOM parsers because of their speed when reading in XML and generating a JDOM document. If you prefer not to use the default SAX parser with SAXBuilder, you can always substitute a third-party SAX parser.

Simply pass the name of the SAX Driver class to the SAXBuilder constructor when creating the builder. Make sure that the classes required by the alternate parser are available in your CLASSPATH. SAXBuilder will then use the specified SAX parser to build a JDOM document.

Inputting Using DOMBuilder
An alternative to the SAXBuilder is the DOMBuilder. The DOMBuilder class is intended to allow us to build a JDOM document from a preexisting DOM document. It uses basically the same steps as when using SAXBuilder.

First, create a new instance of a DOMBuilder object. Next, invoke one of the build methods to read the XML input and build a JDOM document object.

To create a new DOMBuilder object, four different constructors are available. The default constructor creates a new DOMBuilder using the default DOM parser - as specified by the default JAXP parser, or a JDOM default if not. Validation is turned off.

The default constructor with no validation suffices for most purposes, but the other three constructors allow for greater control when selecting a DOM parser. They also allow you to enable or disable validation.

After creating a DOMBuilder object, use one of the DOMBuilder.build methods to build a JDOM document from an existing DOM document object. This build method is just like the SAXBuilder.build methods except that it takes an org.w3c.dom.Document object as a single argument for its input.

In addition, DOMBuilder contains a build method that allows you to construct a JDOM element object directly from a DOM element (org.w3c.dom.Element) object. The DOMBuilder class is intended primarily as a way of generating a JDOM document from a preexisting DOM document.

The DOMBuilder class contains three additional DOMBuilder.build methods, each of these taking a single argument - either a java.io.File, java.io.InputStream, or a java.net.URL - and building a JDOM document from a file, input stream, or URL, respectively. These other methods are provided as a means of cross-checking the SAXBuilder.build methods, which is the recommended parser for XML parsing.

Generating a JDOM document using a DOM parser is slow, hence the SAX parser recommendation. The only possible exception to not using a SAX parser (via the SAXBuilder class) is if you are trying to validate the correct operation of the SAXBuilder class.

Working Together: JDOM and XSLT
One of the more common questions posted to the JDOM-interest discussion list centers on using JDOM with XSLT. There are several ways to do this. Below we look at one such way using a couple of classes from the JDOM-contrib repository.

Now that we have seen how to create, input, and output a JDOM document object, let's see how to feed it into an XSLT processor to transform one JDOM document into another.

XSLT Transformations Using JDOMResult and JDOMSource
The example described later assumes that you have downloaded and installed the JDOM-contrib files from the JDOM Web site. Refer to Part 1 of this series for details on downloading and installing JDOM. The JDOM-contrib files contain two classes intended to make using JDOM with XSLT quite straightforward. These are JDOMResult and JDOMSource. You can access these, provided the JDOM-contrib.jar file is (or its classes are) in your CLASSPATH.

In addition to the JDOM-contrib files, this example also makes use of classes from the Java API for XML Processing (JAXP) 1.1.

In Listing 2 there's a transform method - in the class XSLTDemo - that takes a JDOM document and the name of an XSLT file, then using JDOMResult and JDOMSource, transforms it according to the instructions in the given XSLT file. The transform method then returns the resulting JDOM document.

I thank Laurent Bihanic for this example, and the contribution of JDOMSource and JDOMResult to the JDOM-contrib repository.

Family Matters: Working with Children
One of the useful features of JDOM is that it allows developers to add and remove elements with a single line of code in its simplest form. For example, developers can create a child element from one line of code instead of requiring a factory method to create it for them after requesting it. However, more business logic may need to be added for greater functionality.

Once you have a JDOM document, you'll want to traverse it and possibly manipulate certain elements. JDOM makes manipulation of child elements as easy as manipulating a Java 2 List. To obtain a list of child Elements belonging to a given element, use one of the getChildren methods:

List children = element.getChildren();
List children = element.getChildren
( name );
List children = element.getChildren
( name, namespace );

These methods return a list of child elements belonging to the Element, element. If no children exist, the returned list will be empty.

Any changes to the returned list object will automatically be reflected in the underlying JDOM document. Since each of these methods return a Java 2 List object, then adding, removing, and reordering children are performed using native Java 2 List operations.

For example, to create a new child Element and add it as the second child to a list, use something like the following:

Element newChild =
new Element("child")
.setText("new child element");
children.add( 1, newChild );

Note that since the first item in a list is numbered 0, then the second item has an index of 1. Hence, the above code adds the newChild element as the second child in the list, children.

Similarly, to remove the first element (index 0) from the list, use the following:

children.remove( 0 );

The change is automatically reflected in the associated JDOM document, and the first child will be removed from the document.

As another JDOM code safety check, JDOM validates the document structure, making sure you don't have duplicate nodes above and below a child, which would result in an infinite loop. In other words, JDOM overrides the add and remove methods and makes sure there's only one parent for each child element and that that same child does not exist in a conflicting position on the tree.

Conclusion
This two-part series on JDOM examined in detail how this open-source Java API simplifies XML document manipulation when compared with the previous alternatives. It also describes how JDOM interacts with existing APIs for document manipulation, such as SAX and DOM. JDOM's tight, Java-centric design makes XML document creation, manipulation, transformation, and parsing a no-brainer for Java developers.

In these articles, we explored the purpose that JDOM serves in filling in the gaps where SAX and DOM fail in XML document manipulation. We also explored the JDOM API in depth, then in Part 2 we demonstrated how to use the API to perform common tasks such as inputting and outputting JDOM documents, as well as how to use JDOM with XSLT.

JDOM recently was accepted as a Java Specification Request (JSR-102) by the Java Community Process (JCP). As such, expect to hear a great deal more about JDOM in the future as it continues to be embraced by the Java community.

Acknowledgments
Special thanks to Steven Gould for sharing his expertise in JDOM and working so diligently with me on this series.

Resources
1. JDOM: www.jdom.org
2. JDOM discussion lists: www.jdom.org/involved/lists.html
3. Java API for XML Processing (JAXP): http://java.sun.com/xml/xml_jaxp.html
4. The Collections API for JDK 1.1: www.java.sun.com/products/javabeans/infobus/
5. For an alternative way of using JDOM with XSLT, see "Using JDOM and XSLT: How to Find the Right Input for Your Processor," IBM developerWorks, March 2001, by Brett McLaughlin (www-106.ibm.com/developerworks/xml/library/x-tipjdom.html).

More Stories By Shari Jones

Shari Jones is a freelance journalist and a technical writer. A former consultant, she has more than 10 years of experience writing technical articles and documentation - covering all areas of the high-tech industry. She has written for various magazines, including SunWorld, Linux.SYS-CON.com, IBM's developerWorks and others. Her work also has been selected for inclusion on Sun's Solaris Developer Connection.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@CloudExpo Stories
In the midst of the widespread popularity and adoption of cloud computing, it seems like everything is being offered “as a Service” these days: Infrastructure? Check. Platform? You bet. Software? Absolutely. Toaster? It’s only a matter of time. With service providers positioning vastly differing offerings under a generic “cloud” umbrella, it’s all too easy to get confused about what’s actually being offered. In his session at 16th Cloud Expo, Kevin Hazard, Director of Digital Content for SoftL...
The WebRTC Summit 2014 New York, to be held June 9-11, 2015, at the Javits Center in New York, NY, announces that its Call for Papers is open. Topics include all aspects of improving IT delivery by eliminating waste through automated business models leveraging cloud technologies. WebRTC Summit is co-located with 16th International Cloud Expo, @ThingsExpo, Big Data Expo, and DevOps Summit.
SYS-CON Events announced today Sematext Group, Inc., a Brooklyn-based Performance Monitoring and Log Management solution provider, will exhibit at SYS-CON's DevOps Summit 2015 New York, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Sematext is a globally distributed organization that builds innovative Cloud and On Premises solutions for performance monitoring, alerting and anomaly detection (SPM), log management and analytics (Logsene), search analytics (S...
@ThingsExpo has been named the Top 5 Most Influential M2M Brand by Onalytica in the ‘Machine to Machine: Top 100 Influencers and Brands.' Onalytica analyzed the online debate on M2M by looking at over 85,000 tweets to provide the most influential individuals and brands that drive the discussion. According to Onalytica the "analysis showed a very engaged community with a lot of interactive tweets. The M2M discussion seems to be more fragmented and driven by some of the major brands present in the...
SYS-CON Events announced today Arista Networks will exhibit at SYS-CON's DevOps Summit 2015 New York, which will take place June 9-11, 2015, at the Javits Center in New York City, NY. Arista Networks was founded to deliver software-driven cloud networking solutions for large data center and computing environments. Arista’s award-winning 10/40/100GbE switches redefine scalability, robustness, and price-performance, with over 3,000 customers and more than three million cloud networking ports depl...
Hosted PaaS providers have given independent developers and startups huge advantages in efficiency and reduced time-to-market over their more process-bound counterparts in enterprises. Software frameworks are now available that allow enterprise IT departments to provide these same advantages for developers in their own organization. In his workshop session at DevOps Summit, Troy Topnik, ActiveState’s Technical Product Manager, will show how on-prem or cloud-hosted Private PaaS can enable organ...
Countless business models have spawned from the IaaS industry. Resell Web hosting, blogs, public cloud, and on and on. With the overwhelming amount of tools available to us, it's sometimes easy to overlook that many of them are just new skins of resources we've had for a long time. In his General Session at 16th Cloud Expo, Phil Jackson, Lead Developer Advocate at SoftLayer, will break down what we've got to work with and discuss the benefits and pitfalls to discover how we can best use them t...
Getting started is often the hardest part of any project, and converting your data center into a Git Repository is no different. In his session at 16th Cloud Expo, Christopher Gallo, Developer Advocate for SoftLayer, an IBM Company, will discuss some of the more popular configuration management suites, with some practical examples showing off the power of SaltStack. Hopefully, by the end of this presentation, you’ll be ready to stop deploying changes manually and enter the magical world of sof...
The world's leading Cloud event, Cloud Expo has launched Microservices Journal on the SYS-CON.com portal, featuring over 19,000 original articles, news stories, features, and blog entries. DevOps Journal is focused on this critical enterprise IT topic in the world of cloud computing. Microservices Journal offers top articles, news stories, and blog posts from the world's well-known experts and guarantees better exposure for its authors than any other publication. Follow new article posts on T...
SYS-CON Media announced that IBM, which offers the world’s deepest portfolio of technologies and expertise that are transforming the future of work, has launched ad campaigns on SYS-CON’s numerous online magazines such as Cloud Computing Journal, Virtualization Journal, SOA World Magazine, and IoT Journal. IBM’s campaigns focus on vendors in the technology marketplace, the future of testing, Big Data and analytics, and mobile platforms.
SYS-CON Events announced today the IoT Bootcamp – Jumpstart Your IoT Strategy, being held June 9–10, 2015, in conjunction with 16th Cloud Expo and Internet of @ThingsExpo at the Javits Center in New York City. This is your chance to jumpstart your IoT strategy. Combined with real-world scenarios and use cases, the IoT Bootcamp is not just based on presentations but includes hands-on demos and walkthroughs. We will introduce you to a variety of Do-It-Yourself IoT platforms including Arduino, Ras...
DevOps tasked with driving success in the cloud need a solution to efficiently leverage multiple clouds while avoiding cloud lock-in. Flexiant today announces the commercial availability of Flexiant Concerto. With Flexiant Concerto, DevOps have cloud freedom to automate the build, deployment and operations of applications consistently across multiple clouds. Concerto is available through four disruptive pricing models aimed to deliver multi-cloud at a price point everyone can afford.
SYS-CON Events announced today that SafeLogic has been named “Bag Sponsor” of SYS-CON's 16th International Cloud Expo® New York, which will take place June 9-11, 2015, at the Javits Center in New York City, NY. SafeLogic provides security products for applications in mobile and server/appliance environments. SafeLogic’s flagship product CryptoComply is a FIPS 140-2 validated cryptographic engine designed to secure data on servers, workstations, appliances, mobile devices, and in the Cloud....
SYS-CON Events announced today that the DevOps Institute has been named “Association Sponsor” of SYS-CON's DevOps Summit, which will take place on June 9–11, 2015, at the Javits Center in New York City, NY. The DevOps Institute provides enterprise level training and certification. Working with thought leaders from the DevOps community, the IT Service Management field and the IT training market, the DevOps Institute is setting the standard in quality for DevOps education and training.
Plutora provides enterprise release management and test environment SaaS solutions to clients in North America, Europe and Asia Pacific. Leading companies across a variety of industries, including financial services, telecommunications, retail, pharmaceutical and media, rely on Plutora's SaaS solutions to orchestrate releases and environments faster and with integrity. Products include Plutora Release Manager, Plutora Test Environment Manager and Plutora Deployment Manager.
SYS-CON Events announced today the DevOps Foundation Certification Course, being held June ?, 2015, in conjunction with DevOps Summit and 16th Cloud Expo at the Javits Center in New York City, NY. This sixteen (16) hour course provides an introduction to DevOps – the cultural and professional movement that stresses communication, collaboration, integration and automation in order to improve the flow of work between software developers and IT operations professionals. Improved workflows will res...
When it comes to building applications, one database definitely does not fit all. Traditional SQL databases are great for storing highly structured, normalized data and performing analytics and reporting. NoSQL has attracted developers with its awesome flexibility, and JSON-centric document stores like Cloudant make web developers incredibly productive by offering a JavaScript environment from end-to-end. Recent Big Data challenges have driven the need for a distributed approach to analytics e...
Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 16th Cloud Expo at the Javits Center in New York June 9-11 will find fresh new content in a new track called PaaS | Containers & Microservices Containers are not being considered for the first time by the cloud community, but a current era of re-consideration has pushed them to the top of the cloud agenda. With the launch ...
Modern Systems announced completion of a successful project with its new Rapid Program Modernization (eavRPMa"c) software. The eavRPMa"c technology architecturally transforms legacy applications, enabling faster feature development and reducing time-to-market for critical software updates. Working with Modern Systems, the University of California at Santa Barbara (UCSB) leveraged eavRPMa"c to transform its Student Information System from Software AG's Natural syntax to a modern application lev...
SOA Software has changed its name to Akana. With roots in Web Services and SOA Governance, Akana has established itself as a leader in API Management and is expanding into cloud integration as an alternative to the traditional heavyweight enterprise service bus (ESB). The company recently announced that it achieved more than 90% year-over-year growth. As Akana, the company now addresses the evolution and diversification of SOA, unifying security, management, and DevOps across SOA, APIs, microser...