Welcome!

Machine Learning Authors: Yeshim Deniz, Pat Romanski, Liz McMillan, Elizabeth White, Corey Roth

Blog Feed Post

Bringing LTE Indoors

by Andrew Mackay, Manager Mobile Solutions, Cisco Systems

 

As Long Term Evolution (LTE) networks continue to be deployed, it is becoming evident that matching the existing 3G coverage quality is going to be a challenge. This is reminiscent of the early days of 3G, when it took many years to get coverage matching underlying GSM. The higher carrier frequency (2.1GHz) and partial initial overlays left deep indoor coverage with “cold spots.”  This resulted in unreliable calls and increased battery consumption, which led many users to disable 3G out of frustration.  Over time, operators invested in more infill Broadband Telephony Services (BTS), wider use of In-building Systems (IBS) and repeaters, but indoor coverage was only really resolved when 3G on 850/900 MHz was deployed as a coverage “safety net.”

 

In Asia, the majority of LTE deployments are in the 1.8GHz band and higher. As a result, the typical LTE user drops back to 3G (850/900MHz) on a regular basis when deep indoors, commuting, or even inside their home. Initially, the user experience of dropping from LTE to 3G for data services may not be so irritating since voice is still falling back to 3G in the majority of networks. Plus, in many indoor scenarios, good Wi-Fi service is available to fill-in the missing bandwidth. But, ultimately, this is a branding issue: customers subscribing to a 4G service expect that level of service, not to see their service provider icon showing 3G. It becomes an even larger issue when you want to serve your subscriber real-time services over 4G, such-as voice and streaming video. So how do we avoid these service “pot-holes”?

 

potholes.png

“Warning: 3G pot-holes ahead.”

 

Many operators tell me that they will wait for sub-1GHz LTE coverage before considering wide spread VoLTE (Voice over LTE) deployment, but this may take years. Unlike in the US and Europe, the benefits of the digital dividend have yet to arrive at APAC with only live LTE APT700MHz deployments (in Taiwan so far). But even after the networks arrive it will take a while for the majority of devices to support the new band. 3G band refarming isn’t as easy as it sounds either; i.e., how do you refarm from carriers full of voice, which you can’t move to 4G until you have good VoLTE coverage? A classic “catch-22.”

 

One possible solution is to rely on Wi-Fi as a stop-gap measure for voice. Certainly, this approach has been in the press recently with operators 3 and EE in the UK discussing VoWiFi (Voice over Wi-Fi) strategies. In the case of EE, the role of using VoWiFi to plug LTE coverage holes was made explicit: “The aim of VoWiFi is to improve in-building coverage. Calls will be automatically routed via WiFi, for instance, in a user’s home or office, where there is an absence of cellular coverage.” VoWiFi received further attention with the announcement of iOS8 support for Wi-Fi calling on T-Mobile’s USA network.

 

wificalling.png

“iOS8 adds VoWiFi”

 

The challenge I foresee with VoWiFi is providing a “Carrier Grade” user experience. My concern is not with voice quality, which can be maintained in HD on an uncongested access point, but more the limited mobility. At present, as a Wi-Fi signal fades, the client hangs on to the connection despite quality dropping below what VoIP (Voice over IP) requires, before giving up and switching back to cellular. Another issue is variability of up-stream connectivity on different Wi-Fi networks accessed on a typical day. In the case of a work Wireless Local Area Network (WLAN), for example, Session Initiation Protocol (SIP) traffic might be blocked as per the enterprise policy. Both of these issues are critical in the case of terminating calls, where the user may be forced to stay put to complete the call or have the call go straight to voicemail.

I believe Wi-Fi will be an important stop-gap for poor LTE indoor coverage, but, eventually, it should take on the complementary role of picking up the non-real-time bandwidth workload. The ideal end game has to be to provide sufficient LTE coverage and capacity to match (or exceed) the current 3G user experience for real-time services, particularly voice. How this is achieved given the multiple RAN tools available (lower frequency bands, LTE Smallcells, Repeaters, Relays and IBS) becomes a question of time and the best TCO business case, and that’s a whole other topic.

 

To learn more about visit our LTE technologies page, check our Twitter feed @CiscoSPMobility or contact Jacqueline Chan ([email protected]) for more information.

Read the original blog entry...

More Stories By Deborah Strickland

The articles presented here are blog posts from members of our Service Provider Mobility community. Deborah Strickland is a Web and Social Media Program Manager at Cisco. Follow us on Twitter @CiscoSPMobility.

CloudEXPO Stories
Your job is mostly boring. Many of the IT operations tasks you perform on a day-to-day basis are repetitive and dull. Utilizing automation can improve your work life, automating away the drudgery and embracing the passion for technology that got you started in the first place. In this presentation, I'll talk about what automation is, and how to approach implementing it in the context of IT Operations. Ned will discuss keys to success in the long term and include practical real-world examples. Get started on automating your way to a brighter future!
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science," is responsible for setting the strategy and defining the Big Data service offerings and capabilities for EMC Global Services Big Data Practice. As the CTO for the Big Data Practice, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He's written several white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power the organization's key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the "Big Data MBA" course. Bill was ranked as #15 Big Data Influencer by Onalytica. Bill has over three decades of experience in data warehousing, BI and analytics. He authored E...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the massive amount of information associated with these devices. Ed presented sought out sessions at CloudEXPO Silicon Valley 2017 and CloudEXPO New York 2017. He is a regular contributor to Cloud Computing Journal.
Wooed by the promise of faster innovation, lower TCO, and greater agility, businesses of every shape and size have embraced the cloud at every layer of the IT stack – from apps to file sharing to infrastructure. The typical organization currently uses more than a dozen sanctioned cloud apps and will shift more than half of all workloads to the cloud by 2018. Such cloud investments have delivered measurable benefits. But they’ve also resulted in some unintended side-effects: complexity and risk. End users now struggle to navigate multiple environments with varying degrees of performance. Companies are unclear on the security of their data and network access. And IT squads are overwhelmed trying to monitor and manage it all.
Sanjeev Sharma Joins November 11-13, 2018 @DevOpsSummit at @CloudEXPO New York Faculty. Sanjeev Sharma is an internationally known DevOps and Cloud Transformation thought leader, technology executive, and author. Sanjeev's industry experience includes tenures as CTO, Technical Sales leader, and Cloud Architect leader. As an IBM Distinguished Engineer, Sanjeev is recognized at the highest levels of IBM's core of technical leaders.