Welcome!

Machine Learning Authors: Yeshim Deniz, Zakia Bouachraoui, Pat Romanski, Elizabeth White, Liz McMillan

Related Topics: Microservices Expo, Java IoT, Linux Containers, Machine Learning , Agile Computing, @DXWorldExpo

Microservices Expo: Article

Understanding Application Performance on the Network | Part 5

Processing Delays

In Part IV, we wrapped up our discussions on bandwidth, congestion and packet loss. In Part V, we examine the four types of processing delays visible on the network, using the request/reply paradigm we outlined in Part I.

Server Processing (Between Flows)
From the network's perspective, we allocate the time period between the end of a request flow and the beginning of the corresponding reply flow to server processing. Generally speaking, the server doesn't begin processing a request until it has received the entire flow, i.e., the last packet in the request message; similarly, the server doesn't begin sending the reply until it has finished processing the request. We sometimes refer to these delays between flows as "pure" processing delays, distinct from another type of intra-flow processing delay we call starved for data and discuss later. Server processing delays occur as a result of a request message, and therefore always occur within a thread.

Transaction Trace Illustrations
These "pure" server processing delays are generally relatively simple to detect, to understand, and to prove. Transaction Trace's Node Processing table lists all of the observed processing delays for an operation in tabular format; by splitting this table with the Bounce Diagram and highlighting a row of interest, the Bounce Diagram will display the last packet of the request flow and the first packet of the corresponding reply flow, effectively diagramming the measurement.

Use the Node Processing Table split with the Bounce Diagram to illustrate node processing delay

You may also use the Thread Analysis split with the Bounce Diagram; this will provide a view of the request and reply packet flows as well as the processing measurement.

Split the Thread View with the Bounce Diagram to illustrate the request flow, node processing and reply flow

Starved for Data (Sending Node, Within a Flow)
Sometimes, the network interface will be able to transmit data at a rate faster than the sending application can deliver to the TCP socket. For example, a busy ftp server may momentarily interrupt sending a large file because of a disk, memory or CPU bottleneck. We refer to these pauses that occur in the middle of a flow as "starved for data" conditions; there is nothing on the network (no TCP flow control constraint) preventing the request or reply flow from continuing, so the cause must be internal to the sending node. Starved for data bottlenecks occur within a flow (instead of between flows), and are related to the sending node - either the client or server.

Transaction Trace Illustration
These cases can be more difficult to visualize. Since the condition is generally not too common, it is often best to rule out other performance bottlenecks first, before checking for data starvation. When it does occur, the condition has the effect of extending the duration of a request or reply flow, and starved for data delays are included in Transaction Trace's Node Sending measurements. Sort the rate column of the Node Sending Table and split the window with the Bounce Diagram; the Bounce Diagram will illustrate the packets associated with a sending measurement. For those sending measurements where you suspect a starved for data condition, look for idle periods of time where the sending node's flow has been interrupted. Importantly, a starved for data delay will terminate with the transmission of a data packet that resumes the sender's flow, not a TCP ACK from the receiver that might suggest a TCP or application window constraint.

The Node Sending table is split with the Bounce Diagram to help illustrate Starved for Data conditions; note the pause in transmission that resumes independent of any TCP ACK.

Client Processing (Between Flows)
From the network's perspective, we allocate the time period between the end of a reply flow and the beginning of the next request flow to client processing. Generally speaking, the client cannot begin processing a reply until it has received the entire reply flow, i.e., the last packet of the reply message; similarly, the client doesn't begin sending the next (new) request until it has completed processing the reply. (This correlation generally applies to request/reply flows on the same TCP connection.)

Transaction Trace Illustrations
Similar to server processing delays, client delays are relatively simple to understand. In most cases, client delays occur between threads; in other words, after one thread has completed but before the next thread begins. For tasks with thread-level decodes, Transaction Trace's Thread Analysis Gantt chart view can illustrate these delays well.

Gaps between threads are associated with client processing delays

Discounting Client Processing
Note that we assume strict adherence to the definition of "operation" here; click to screen update. If the trace has captured multiple steps - say the user navigates through a series of operations - then the user "think time" between steps will appear as client processing delay, with corresponding gaps between threads. You may still use these multi-step tasks for analysis, remembering to discount client processing delays. Alternatively, you can save each step as a separate task by selecting a sequence of threads from the Thread table.

For more network strategies, click here for the full article.

More Stories By Gary Kaiser

Gary Kaiser is a Subject Matter Expert in Network Performance Analytics at Dynatrace, responsible for DC RUM’s technical marketing programs. He is a co-inventor of multiple performance analysis features, and continues to champion the value of network performance analytics. He is the author of Network Application Performance Analysis (WalrusInk, 2014).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


CloudEXPO Stories
DevOpsSUMMIT at CloudEXPO, to be held June 25-26, 2019 at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises – and delivering real results. Among the proven benefits, DevOps is correlated with 20% faster time-to-market, 22% improvement in quality, and 18% reduction in dev and ops costs, according to research firm Vanson-Bourne. It is changing the way IT works, how businesses interact with customers, and how organizations are buying, building, and delivering software.
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.
It cannot be overseen or regulated by any one administrator, like a government or bank. Currently, there is no government regulation on them which also means there is no government safeguards over them. Although many are looking at Bitcoin to put money into, it would be wise to proceed with caution. Regular central banks are watching it and deciding whether or not to make them illegal (Criminalize them) and therefore make them worthless and eliminate them as competition. ICOs (Initial Coin Offerings) are something most have no idea as to what it means and how you utilize it. Where is the "Stamp of Approval" or "Stamp of Legitimacy" on some of these Bitcoin websites (how do you know you are not dealing with a scammer?)
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a member of the Society of Information Management (SIM) Atlanta Chapter. She received a Business and Economics degree with a minor in Computer Science from St. Andrews Presbyterian University (Laurinburg, North Carolina). She resides in metro-Atlanta (Georgia).