Click here to close now.

Welcome!

AJAX & REA Authors: Pat Romanski, Liz McMillan, XebiaLabs Blog, AppDynamics Blog, Elizabeth White

News Feed Item

Big Data Market: Business Case, Market Analysis and Forecasts 2014 - 2019

LONDON, Jan. 8, 2014 /PRNewswire/ -- Reportbuyer.com just published a new market research report:

Big Data Market: Business Case, Market Analysis and Forecasts 2014 - 2019


Overview:

Big Data refers to a massive volume of both structured and unstructured data that is so large that it is difficult to process using traditional database and software techniques. While the presence of such datasets is not something new, the past few years have witnessed immense commercial investments in solutions that address the processing and analysis of Big Data.

Big Data opens a vast array of applications and opportunities in multiple vertical sectors including, but not limited to, retail and hospitality, media, utilities, financial services, healthcare and pharmaceutical, telecommunications, government, homeland security, and the emerging industrial Internet vertical.

Despite challenges, such as the lack of clear big data strategies, security concerns and the need for workforce re-skilling, the growth potential of Big Data is unprecedented. Mind Commerce estimates that global spending on Big Data will grow at a CAGR of 48% between 2014 and 2019. Big Data revenues will reach $135 Billion by the end of 2019.

This report provides an in-depth assessment of the global Big Data market, including a study of the business case, application use cases, vendor landscape, value chain analysis, case studies and a quantitative assessment of the industry from 2013 to 2019.

Topics covered in the report:

The Business Case for Big Data: An assessment of the business case, growth drivers and barriers for Big Data
Big Data Technology: A review of the underlying technologies that resolve big data complexities
Big Data Use Cases: A review of investments sectors and specific use cases for the Big Data market
The Big Data Value Chain: An analysis of the value chain of Big Data and the major players involved within it
Vendor Assessment & Key Player Profiles: An assessment of the vendor landscape of leading players within the Big Data market
Market Analysis and Forecasts: A global and regional assessment of the market size and forecasts for the Big Data market from 2014 to 2019

Key Findings:

Big Data opens a vast array of applications and opportunities in multiple vertical sectors including, but not limited to, retail and hospitality, media, utilities, financial services, healthcare and pharmaceutical, telecommunications, government, homeland security, and the emerging industrial Internet vertical.
Mind Commerce has determined that IBM leads the Big Data market in terms of current investments (from a vendor perspective), with estimated revenue for $1.3 Billion in 2012 for its Big Data services, software and hardware sale
Despite challenges such as the lack of clear big data strategies, security concerns and the need for workforce re-skilling, the growth potential of Big Data is unprecedented. Mind Commerce estimates that global spending on Big Data will grow at a CAGR of 48% between 2014 and 2019. Big Data revenues will reach $135 Billion by the end of 2019

Companies in Report:

Accenture
Adaptive
Adobe
Amazon
Apache Software Foundation
APTEAN (Formerly CDC Software)
BoA
Bristol Myers Squibb
Brooks Brothers
Centre for Economics and Business Research
CIA
Cisco Systems
Cloud Security Alliance (CSA)
Cloudera
Dell
EMC
Facebook
Facebook
GoodData Corporation
Google
Google
Guavus
Hitachi Data Systems
Hortonworks
HP
IBM
Informatica
Intel
Jaspersoft
JPMC
McLaren
Microsoft
MongoDB (Formerly 10Gen)
Morgan Stanley
MU Sigma
Netapp
NSA
Opera Solutions
Oracle
Pentaho
Platfora
Qliktech
Quantum
Rackspace
Revolution Analytics
Salesforce
SAP
SAS Institute
Sisense
Software AG/Terracotta
Splunk
Sqrrl
Supermicro
Tableau Software
Teradata
Think Big Analytics
Tidemark Systems
T-Mobile
TomTom
US Xpress
VMware (Part of EMC)
Vodafone

Target Audience:

Investment Firms
Media Companies
Utilities Companies
Financial Institutions
Application Developers
Government Organizations
Retail & Hospitality Companies
Other Vertical Industry Players
Analytics and Data Reporting Companies
Healthcare Service Providers & Institutions
Fixed and Mobile Telecom service providers
Big Data Technology/Solution (Infrastructure, Software, Service) Vendors
1 Chapter 1: Introduction 8
1.1 Executive Summary 8
1.2 Topics Covered 9
1.3 Key Findings 10
1.4 Target Audience 11
1.5 Companies Mentioned 12
2 Chapter 2: Big Data Technology & Business Case 15
2.1 Defining Big Data 15
2.2 Key Characteristics of Big Data 15
2.2.1 Volume 15
2.2.2 Variety 16
2.2.3 Velocity 16
2.2.4 Variability 16
2.2.5 Complexity 16
2.3 Big Data Technology 17
2.3.1 Hadoop 17
2.3.1.1 MapReduce 17
2.3.1.2 HDFS 17
2.3.1.3 Other Apache Projects 18
2.3.2 NoSQL 18
2.3.2.1 Hbase 18
2.3.2.2 Cassandra 18
2.3.2.3 Mongo DB 18
2.3.2.4 Riak 19
2.3.2.5 CouchDB 19
2.3.3 MPP Databases 19
2.3.4 Others and Emerging Technologies 20
2.3.4.1 Storm 20
2.3.4.2 Drill 20
2.3.4.3 Dremel 20
2.3.4.4 SAP HANA 20
2.3.4.5 Gremlin & Giraph 20
2.4 Market Drivers 21
2.4.1 Data Volume & Variety 21
2.4.2 Increasing Adoption of Big Data by Enterprises & Telcos 21
2.4.3 Maturation of Big Data Software 21
2.4.4 Continued Investments in Big Data by Web Giants 21
2.5 Market Barriers 22
2.5.1 Privacy & Security: The 'Big' Barrier 22
2.5.2 Workforce Re-skilling & Organizational Resistance 22
2.5.3 Lack of Clear Big Data Strategies 23
2.5.4 Technical Challenges: Scalability & Maintenance 23
3 Chapter 3: Key Investment Sectors for Big Data 24
3.1 Industrial Internet & M2M 24
3.1.1 Big Data in M2M 24
3.1.2 Vertical Opportunities 24
3.2 Retail & Hospitality 25
3.2.1 Improving Accuracy of Forecasts & Stock Management 25
3.2.2 Determining Buying Patterns 25
3.2.3 Hospitality Use Cases 25
3.3 Media 26
3.3.1 Social Media 26
3.3.2 Social Gaming Analytics 26
3.3.3 Usage of Social Media Analytics by Other Verticals 26
3.4 Utilities 27
3.4.1 Analysis of Operational Data 27
3.4.2 Application Areas for the Future 27
3.5 Financial Services 27
3.5.1 Fraud Analysis & Risk Profiling 27
3.5.2 Merchant-Funded Reward Programs 27
3.5.3 Customer Segmentation 28
3.5.4 Insurance Companies 28
3.6 Healthcare & Pharmaceutical 28
3.6.1 Drug Development 28
3.6.2 Medical Data Analytics 28
3.6.3 Case Study: Identifying Heartbeat Patterns 28
3.7 Telcos 29
3.7.1 Telco Analytics: Customer/Usage Profiling and Service Optimization 29
3.7.2 Speech Analytics 29
3.7.3 Other Use Cases 29
3.8 Government & Homeland Security 30
3.8.1 Developing New Applications for the Public 30
3.8.2 Tracking Crime 30
3.8.3 Intelligence Gathering 30
3.8.4 Fraud Detection & Revenue Generation 30
3.9 Other Sectors 31
3.9.1 Aviation: Air Traffic Control 31
3.9.2 Transportation & Logistics: Optimizing Fleet Usage 31
3.9.3 Sports: Real-Time Processing of Statistics 31
4 Chapter 4: The Big Data Value Chain 32
4.1 How Fragmented is the Big Data Value Chain? 32
4.2 Data Acquisitioning & Provisioning 33
4.3 Data Warehousing & Business Intelligence 33
4.4 Analytics & Virtualization 33
4.5 Actioning & Business Process Management (BPM) 34
4.6 Data Governance 34
5 Chapter 5: Key Players in the Big Data Market 35
5.1 Vendor Assessment Matrix 35
5.2 Apache Software Foundation 36
5.3 Accenture 36
5.4 Amazon 36
5.5 APTEAN (Formerly CDC Software) 37
5.6 Cisco Systems 37
5.7 Cloudera 37
5.8 Dell 37
5.9 EMC 38
5.10 Facebook 38
5.11 GoodData Corporation 38
5.12 Google 38
5.13 Guavus 39
5.14 Hitachi Data Systems 39
5.15 Hortonworks 39
5.16 HP 40
5.17 IBM 40
5.18 Informatica 40
5.19 Intel 40
5.20 Jaspersoft 41
5.21 Microsoft 41
5.22 MongoDB (Formerly 10Gen) 41
5.23 MU Sigma 42
5.24 Netapp 42
5.25 Opera Solutions 42
5.26 Oracle 42
5.27 Pentaho 43
5.28 Platfora 43
5.29 Qliktech 43
5.30 Quantum 44
5.31 Rackspace 44
5.32 Revolution Analytics 44
5.33 Salesforce 45
5.34 SAP 45
5.35 SAS Institute 45
5.36 Sisense 45
5.37 Software AG/Terracotta 46
5.38 Splunk 46
5.39 Sqrrl 46
5.40 Supermicro 47
5.41 Tableau Software 47
5.42 Teradata 47
5.43 Think Big Analytics 48
5.44 Tidemark Systems 48
5.45 VMware (Part of EMC) 48
6 Chapter 6: Market Analysis 49
6.1 Big Data Revenue: 2014 - 2019 49
6.2 Big Data Revenue by Functional Area: 2014 - 2019 50
6.2.1 Supply Chain Management 51
6.2.2 Business Intelligence 52
6.2.3 Application Infrastructure & Middleware 53
6.2.4 Data Integration Tools & Data Quality Tools 54
6.2.5 Database Management Systems 55
6.2.6 Big Data Social & Content Analytics 56
6.2.7 Big Data Storage Management 57
6.2.8 Big Data Professional Services 58
6.3 Big Data Revenue by Region 2014 - 2019 59
6.3.1 Asia Pacific 60
6.3.2 Eastern Europe 61
6.3.3 Latin & Central America 62
6.3.4 Middle East & Africa 63
6.3.5 North America 64
6.3.6 Western Europe 65

List of Figures

Figure 1: The Big Data Value Chain 32
Figure 2: Big Data Vendor Ranking Matrix 2013 35
Figure 3: Big Data Revenue: 2013 - 2019 ($ Million) 49
Figure 4: Big Data Revenue by Functional Area: 2013 - 2019 ($ Million) 50
Figure 5: Big Data Supply Chain Management Revenue: 2013 - 2019 ($ Million) 51
Figure 6: Big Data Supply Business Intelligence Revenue: 2013 - 2019 ($ Million) 52
Figure 7: Big Data Application Infrastructure & Middleware Revenue: 2013 - 2019 ($ Million) 53
Figure 8: Big Data Integration Tools & Data Quality Tools Revenue: 2013 - 2019 ($ Million) 54
Figure 9: Big Data Database Management Systems Revenue: 2013 - 2019 ($ Million) 55
Figure 10: Big Data Social & Content Analytics Revenue: 2013 - 2019 ($ Million) 56
Figure 11: Big Data Storage Management Revenue: 2013 - 2019 ($ Million) 57
Figure 12: Big Data Professional Services Revenue: 2013 - 2019 ($ Million) 58
Figure 13: Big Data Revenue by Region: 2013 - 2019 ($ Million) 59
Figure 14: Asia Pacific Big Data Revenue: 2013 - 2019 ($ Million) 60
Figure 15: Eastern Europe Big Data Revenue: 2013 - 2019 ($ Million) 61
Figure 16: Latin & Central America Big Data Revenue: 2013 - 2019 ($ Million) 62
Figure 17: Middle East & Africa Big Data Revenue: 2013 - 2019 ($ Million) 63
Figure 18: North America Big Data Revenue: 2013 - 2019 ($ Million) 64
Figure 19: Western Europe Big Data Revenue: 2013 - 2019 ($ Million) 65


Read the full report:
Big Data Market: Business Case, Market Analysis and Forecasts 2014 - 2019
http://www.reportbuyer.com/business_government/outsourcing_bpo/big_data_market_business_case_market_analysis_forecasts_2014_2019.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Business_Outsourcing


For more information:
Sarah Smith
Research Advisor at Reportbuyer.com
Email: [email protected]
Tel: +44 208 816 85 48
Website: www.reportbuyer.com

SOURCE ReportBuyer

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@CloudExpo Stories
Due of the rise of Hadoop, many enterprises are now deploying their first small clusters of 10 to 20 servers. At this small scale, the complexity of operating the cluster looks and feels like general data center servers. It is not until the clusters scale, as they inevitably do, when the pain caused by the exponential complexity becomes apparent. We've seen this problem occur time and time again. In his session at Big Data Expo, Greg Bruno, Vice President of Engineering and co-founder of StackI...
Once the decision has been made to move part or all of a workload to the cloud, a methodology for selecting that workload needs to be established. How do you move to the cloud? What does the discovery, assessment and planning look like? What workloads make sense? Which cloud model makes sense for each workload? What are the considerations for how to select the right cloud model? And how does that fit in with the overall IT transformation?
The recent trends like cloud computing, social, mobile and Internet of Things are forcing enterprises to modernize in order to compete in the competitive globalized markets. However, enterprises are approaching newer technologies with a more silo-ed way, gaining only sub optimal benefits. The Modern Enterprise model is presented as a newer way to think of enterprise IT, which takes a more holistic approach to embracing modern technologies.
There is little doubt that Big Data solutions will have an increasing role in the Enterprise IT mainstream over time. 8th International Big Data Expo, co-located with 17th International Cloud Expo - to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA - has announced its Call for Papers is open. As advanced data storage, access and analytics technologies aimed at handling high-volume and/or fast moving data all move center stage, aided by the cloud computing bo...
Every day we read jaw-dropping stats on the explosion of data. We allocate significant resources to harness and better understand it. We build businesses around it. But we’ve only just begun. For big payoffs in Big Data, CIOs are turning to cognitive computing. Cognitive computing’s ability to securely extract insights, understand natural language, and get smarter each time it’s used is the next, logical step for Big Data.
Enterprises are fast realizing the importance of integrating SaaS/Cloud applications, API and on-premises data and processes, to unleash hidden value. This webinar explores how managers can use a Microservice-centric approach to aggressively tackle the unexpected new integration challenges posed by proliferation of cloud, mobile, social and big data projects. Industry analyst and SOA expert Jason Bloomberg will strip away the hype from microservices, and clearly identify their advantages and d...
There's no doubt that the Internet of Things is driving the next wave of innovation. Google has spent billions over the past few months vacuuming up companies that specialize in smart appliances and machine learning. Already, Philips light bulbs, Audi automobiles, and Samsung washers and dryers can communicate with and be controlled from mobile devices. To take advantage of the opportunities the Internet of Things brings to your business, you'll want to start preparing now.
In a world of ever-accelerating business cycles and fast-changing client expectations, the cloud increasingly serves as a growth engine and a path to new business models. Dynamic clouds enable businesses to continuously reinvent themselves, adapting their business processes, their service and software delivery and their operations to achieve speed-to-market and quick response to customer feedback. As the cloud evolves, the industry has multiple competing cloud technologies, offering on-premises ...
The 5th International DevOps Summit, co-located with 17th International Cloud Expo – being held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the...
The OpenStack cloud operating system includes Trove, a database abstraction layer. Rather than applications connecting directly to a specific type of database, they connect to Trove, which in turn connects to one or more specific databases. One target database is Postgres Plus Cloud Database, which includes its own RESTful API. Trove was originally developed around MySQL, whose interfaces are significantly less complicated than those of the Postgres cloud database. In his session at 16th Cloud...
Over the years, a variety of methodologies have emerged in order to overcome the challenges related to project constraints. The successful use of each methodology seems highly context-dependent. However, communication seems to be the common denominator of the many challenges that project management methodologies intend to resolve. In this respect, Information and Communication Technologies (ICTs) can be viewed as powerful tools for managing projects. Few research papers have focused on the way...
As the world moves from DevOps to NoOps, application deployment to the cloud ought to become a lot simpler. However, applications have been architected with a much tighter coupling than it needs to be which makes deployment in different environments and migration between them harder. The microservices architecture, which is the basis of many new age distributed systems such as OpenStack, Netflix and so on is at the heart of CloudFoundry – a complete developer-oriented Platform as a Service (PaaS...
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading in...
SAP is delivering break-through innovation combined with fantastic user experience powered by the market-leading in-memory technology, SAP HANA. In his General Session at 15th Cloud Expo, Thorsten Leiduck, VP ISVs & Digital Commerce, SAP, discussed how SAP and partners provide cloud and hybrid cloud solutions as well as real-time Big Data offerings that help companies of all sizes and industries run better. SAP launched an application challenge to award the most innovative SAP HANA and SAP HANA...
The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential. The DevOps Summit at Cloud Expo – to be held June 3-5, 2015, at the Javits Center in New York City – will expand the DevOps community, enable a wide...
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect...
There is no question that the cloud is where businesses want to host data. Until recently hypervisor virtualization was the most widely used method in cloud computing. Recently virtual containers have been gaining in popularity, and for good reason. In the debate between virtual machines and containers, the latter have been seen as the new kid on the block – and like other emerging technology have had some initial shortcomings. However, the container space has evolved drastically since coming on...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Ar...
The 17th International Cloud Expo has announced that its Call for Papers is open. 17th International Cloud Expo, to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, APM, APIs, Microservices, Security, Big Data, Internet of Things, DevOps and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding bu...
Cloud Expo, Inc. has announced today that Andi Mann returns to DevOps Summit 2015 as Conference Chair. The 4th International DevOps Summit will take place on June 9-11, 2015, at the Javits Center in New York City. "DevOps is set to be one of the most profound disruptions to hit IT in decades," said Andi Mann. "It is a natural extension of cloud computing, and I have seen both firsthand and in independent research the fantastic results DevOps delivers. So I am excited to help the great team at ...