Welcome!

Machine Learning Authors: Elizabeth White, Zakia Bouachraoui, Carmen Gonzalez, Yeshim Deniz, Liz McMillan

Related Topics: Java IoT, Microservices Expo, Open Source Cloud, Machine Learning , Release Management , Python

Java IoT: Article

Profiling Python Performance Using lineprof, statprof, and cProfile

Let’s look at profiling in Python

If you’re a regular here, you know how much we care about the full-stack view of applications. Today, let’s zoom in a bit, and talk about the performance of a single layer. In particular, let’s look at profiling in Python.

As an example, let’s take this bit of code for calculating confidence intervals of the mean of a set of data. If you’re not familiar with confidence intervals, they provide a set of bounds for a given statistic; a 95% interval implies that the true mean lies in the calculated range 95% of the time. One way of calculating this involves generating a number of new data sets from the data you have (random selection, with replacement), and looking at that (meta?-)data set. In practice, you typically run this a couple of times, look at the results, and see if they’re converging. If not, you keep running until they do converge, or you hit some max number of iterations.

It turns out, doing 1000 iterations of a reasonable data set size (say, 100k points) is a reasonably expensive operation — about 2 seconds (ish) on my laptop. That’s not too bad in isolation, but run every 15 minutes, on a variety of data sizes up to 1 million, over all customers here at AppNeta? We can do much better.

Since this is Python, let’s see if there’s an obvious way to do it. As it turns out, there is: the standard library module cProfile. This is Python’s flexible, deterministic, C-implemented profiler. (There’s also profile, a pure-python version, but unless you have good cause to avoid C extensions, cProfile is probably a better bet.) cProfile will give us a list of all function calls, sorted however we want. Let’s run it, and dump the result to a file:

ProfilePython-1

There’s a few important things to take note of in these results. The first thing to notice is that 3 of the top 4 functions are in the random module. We only use the random module twice in our example, and the initial use (generating the data set) is a constant 100,000 calls. That leaves 4 million calls from the inner loop of confidence_interval. Since that’s a core part of the algorithm, I wonder if there’s a better way to do that?

For a start, let’s try using a different random number generator. As a rule, if you have a slow function in python, and numpy has a replacement function, the numpy version will be faster. Let’s replace random with numpy.random, and try again:

ProfilePython-2

Much better! Unfortunately, now we have a different problem. Instead of a single line or function call, we only know our problem exists inside a function.

One way to drill down on this is to use statprof. This is a different type of profiler: instead of instrumenting each function call, statprof wakes up at pre-defined intervals and records a stack trace, including line number. Let’s run that:

ProfilePython-3

Cool! Looking back at the code, lines 44 and 45 are the selection and array creation:

ProfilePython-4

Interestingly, the absolute time reported by statprof is a bit lower than cProfile. That difference is due to the statistical nature of statprof. Even at the default setting of 1ms samples, it simply has to do less work than cProfile, who has to instrument all 4 million calls to the various parts of random. It’s worth remembering this difference in overhead, as some code will exihibit different behavior as the timing changes.

In any case, can we do better? It’s possible that the time here is no longer being spent on calculations, but instead on simply creating intermediate arrays. Let’s combine those lines, and re-run:

ProfilePython-5

That certainly seems better: 1.92s vs 2.39s (1.54 + 0.85) from above. At this point, though, be careful. Up until now, we’ve avoided directly comparing profiling runs. Looking at the percentage of time spent, we’re actually at about the same place (85% of total); this run just completed faster than the last run. This is a common pattern — as the low-hanging fruit is picked off, it becomes more and more important to validate smaller gains in more formal ways. How, exactly, to collect those stats is a topic for another post.

It’s also worth mentioning Robert Kern’s line_profiler. It’s a deterministic profiler (like cProfile), but it captures profiling data on a line-by-line basis. It also allows selectively profiling specific functions, which can be invaluable on a larger codebase, to weed out the noise from other modules. Unfortunately, because it does capture every line call you ask it to, the overhead of instrumenting every line you run can be substantial (4x slowdown on my laptop). For completeness, here’s what it looks like on our sample:

ProfilePython-6

Finally, remember that profiling is just one component of a performance toolkit. Most performance problems aren’t complex; they’re just well-hidden. Before writing the above code, I hadn’t realized how expensive random number generation could be. Simply taking the time to look for a faster function saved over 90% of the time spent.

Make it work, then make it pretty, then make it fast. And with the right tools, it doesn’t even take that long.

And if you want to find other ways to optimize your code and make it fast, start using TraceView for free - sign up here.

Related Articles

Python and gevent

Tracing Celery Performance For Web Applications

Tracing Python — An API

More Stories By TR Jordan

A veteran of MIT’s Lincoln Labs, TR is a reformed physicist and full-stack hacker – for some limited definition of full stack. After a few years as Software Development Lead with Thermopylae Science and Techology, he left to join Tracelytics as its first engineer. Following Tracelytics merger with AppNeta, TR was tapped to run all of its developer and market evangelism efforts. TR still harbors a not-so-secret love for Matlab-esque graphs and half-baked statistics, as well as elegant and highly-performant code. Read more of his articles at www.appneta.com/blog or visit www.appneta.com.

CloudEXPO Stories
There's no doubt that blockchain technology is a powerful tool for the enterprise, but bringing it mainstream has not been without challenges. As VP of Technology at 8base, Andrei is working to make developing a blockchain application accessible to anyone. With better tools, entrepreneurs and developers can work together to quickly and effectively launch applications that integrate smart contracts and blockchain technology. This will ultimately accelerate blockchain adoption on a global scale.
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also received the prestigious Outstanding Technical Achievement Award three times - an accomplishment befitting only the most innovative thinkers. Shankar Kalyana is among the most respected strategists in the global technology industry. As CTO, with over 32 years of IT experience, Mr. Kalyana has architected, designed, developed, and implemented custom and packaged software solutions across a vast spectrum o...
When building large, cloud-based applications that operate at a high scale, it’s important to maintain a high availability and resilience to failures. In order to do that, you must be tolerant of failures, even in light of failures in other areas of your application. “Fly two mistakes high” is an old adage in the radio control airplane hobby. It means, fly high enough so that if you make a mistake, you can continue flying with room to still make mistakes. In his session at 18th Cloud Expo, Lee Atchison, Principal Cloud Architect and Advocate at New Relic, will discuss how this same philosophy can be applied to highly scaled applications, and can dramatically increase your resilience to failure.
SAP is the world leader in enterprise applications in terms of software and software-related service revenue. Based on market capitalization, we are the world's third largest independent software manufacturer. Harness the power of your data and accelerate trusted outcome-driven innovation by developing intelligent and live solutions for real-time decisions and actions on a single data copy. Support next-generation transactional and analytical processing with a broad set of advanced analytics - run securely across hybrid and multicloud environments.
Founded in 2002 and headquartered in Chicago, Nexum® takes a comprehensive approach to security. Nexum approaches business with one simple statement: “Do what’s right for the customer and success will follow.” Nexum helps you mitigate risks, protect your data, increase business continuity and meet your unique business objectives by: Detecting and preventing network threats, intrusions and disruptions Equipping you with the information, tools, training and resources you need to effectively manage IT risk Nexum, Latin for an arrangement by which one pledged one’s very liberty as security, Nexum is committed to ensuring your security. At Nexum, We Mean Security®.