Welcome!

AJAX & REA Authors: Liz McMillan, Elizabeth White, David H Deans, Pat Romanski, Scott Hirsch

Blog Feed Post

The Hype & Reality of Small Cells Performance

Heterogeneous networks (HetNets) consist of large (macro) cells with high transmit power (typically 5 W – 40 W) and small cells with low transmit power (typically 100 mW – 2 W). The small cells are distributed beneath the large cells and can run on the same frequency as the large cell (co-channel), or on a different frequency. As an evolution of the cellular architecture, HetNets and small cells have gained much attention as a technique to increase mobile network capacity and are today one of the hot topics in the wireless industry. Many of the initial deployments of small cells are of the co-channel type. Standards such as LTE have focused on incorporating techniques to improve the performance of co-channel deployments in earlier releases of the technology standard leaving the handling of multi-frequency deployment type to later releases. In all, operators today have multiple options of small cell deployment scenarios, operational techniques and technology roadmaps to choose from.

 

B1 - Figure 1 Heterogeneous Network Architecture.png

Figure 1 Simplified Heterogeneous Network Architecture.

 

To illustrate some of the deployment issues related to small cells, I will provide in this article a qualitative review of small cell performance and explore their impact on the operator's small cells deployment strategy. The focus is on co-channel deployments which aside from being common in this early stage of HetNet evolution, they provide for a complex radio frequency environment.

 

Throughput Performance: The overall throughput experienced by users on both downlink (base station to the mobile subscriber) and uplink (mobile to base station) paths will generally increase as small cells are deployed. This applies to both users camped on the macro cell and those on the small cells, but for different reasons:

 

  1. The users on the macro cell will benefit as more small cells are added because fewer users will share the common capacity resources. Therefore, the more small cells are added, the better likelihood a user on the macro cell will experience higher throughput; meanwhile,
  2. Users on the small cell will experience better throughput than those on macro cell because of higher probability of line-of-sight connection to the serving base station.

 

If the mobile subscribers are uniformly distributed over the coverage area, then the likelihood a user will experience a certain level of throughput is approximately similar as the number of small cells increases. But in reality, the distribution of users is not uniform as they tend to concentrate in certain "traffic hotspots." In this case, a small cell in a traffic hotspot is expected to provide lower throughput than a small cell in a uniform user distribution area. In the meantime, a user on the macrocell will experience a more pronounced increase in throughput because a higher proportion of users are offloaded from the macro cell. As even more small cells are added, interference will increase leading to successively diminishing marginal increase in throughput.

 

This last note is an important one: small cells are beneficial up to a point. The user experience will be affected by the density of small cells with a diminishing marginal return followed by actual degradation of service as the number of small cells exceeds a certain threshold. When this threshold is reached depends on a number of factors that include the type of technology, morphology, and cell density and distribution. Inter-small cell interference is one factor that limits small cell performance. Another factor is that as we add more small cells, we create more 'cell-edge' regions within the coverage area of macrocells that can also limit performance as I will expand upon below.

 

The throughput performance will depend on the location of the small cells and their proximity to macrocells. A small cells close to a macrocell is more likely to be affected by interference than one located at the cell-edge resulting in lower throughput performance. Correspondingly, the performance will depend on the size of the macrocell, or rather, the macrocell density. Small cells deployed close to the cell edge of a large macrocell will provide better performance than those deployed in high-density macrocell area where the average radius is relatively small.

 

Throughput performance will also depend on the output power of the small cell. Simulations show that for a certain macrocell radius, higher power small cells provide better throughput performance than lower power ones given the same small cell base station density.

 

Nevertheless, the key take away here is this: it pays to find out where the traffic hot spots are as otherwise, the gain achieved from small cells will be small. Small cell deployment would have to be 'surgical' in select areas to achieve the maximum return on investment.

 

Interference and Coverage Performance: While small cells improve performance in general, there are certain situations where they cause interference or even a coverage hole. One decisive factor is the large power imbalance between the small cell and the macrocell. The power imbalance is larger than simply the rated transmit power because macrocells implement high-gain sectored antennas (13-16 dBi) while small cells typically implement a much lower gain omni-directional antenna (3-6 dBi). The power imbalance results in asymmetric downlink and uplink coverage areas. Because the macrocell has much higher power than the small cell, the downlink coverage area of the small cell would be smaller than the uplink coverage area. This shifts the handover boundary closer to the small cell increasing the possibility of uplink interference to the small cell with which the interfering mobile might have a line-of-sight path. This type of interference is potentially very damaging since it affects all the users in a cell and forces the mobile units served by the small cell to transmit at higher power. The power imbalance also increases the risk of downlink interference although this type of interference is more limited because it affects a single user. The uplink-downlink imbalance is a leading reason why LTE Release 8 small cell gain is limited because cell selection is decided by downlink signal strength and the options for interference mitigation are limited.

 

B1 - Figure 2 Small Cell Interference Scenarios.png

Figure 2 Co-channel interference scenarios in small cell deployments.

 

To address the uplink-downlink coverage imbalance, the coverage area of the small cell base station is extended to allow the small cell to capture more traffic. This is accomplished by adding a bias to the small cell received signal during the cell selection process. But extending the small cell coverage also increases the chances of downlink interference to a mobile subscriber operating at the edge of the small cell.

 

Aside from co-channel interference, there's also a risk of adjacent channel interference in multicarrier networks where macrocells implement two or more frequency carriers. Consider for example a mobile attached to a macrocell on frequency A while it is very close to a small cell operating on adjacent frequency B. The mobile is susceptible to adjacent channel interference from the small cell which would likely have a line-of-sight path to the mobile in contrast to a non-line-of-sight connection with the macrocell.  Another example is that for the uplink: a mobile attached to a macrocell and operating from the edge of a small cell on an adjacent frequency could cause interference to the small cell.

 

There are other potential interference scenarios in addition to those described here. But the basic fact is that the actual performance and benefit of small cells will vary, and will do so more widely in the absence of interference mitigation/performance enhancing techniques. This is one reason why some requirements for small cell deployments have been hotly debated, without a firm resolution. For example, a basic requirement is that of small cell backhaul capacity: what should it be? Should the backhaul link be designed to handle the peak throughput rate, which is a function technology, or the average throughput rate which is much harder to ascertain and put a value on because it depends on many factors related to the deployment scenario?

 

Based on the above description, we know that throughput of small cells will depend largely on the load. The more clustered the subscribers, the lower the overall small cell throughput. On the other hand, if there's a light load (few users), then the capacity will be high. If you are an operator, you sure would need to think carefully about the required backhaul capacity! And while we're on the backhaul topic, let's not forget that we also need to make sure that backhaul on the macrocell is dimensioned properly to support higher traffic load which will certainly come as more small cells are deployed.

 

In this post, I went through some aspects of small cell performance.  These problems are well recognized and certain techniques are being developed and integrated into the standards to address them. This raises other important questions to the operator's strategic network planning process, such as: what interference management and performance enhancement features should be considered? And, what is the technology roadmap for these features? I will expand more on some of these techniques in a future blog post.

 

Follow Frank Rayal on Twitter @FrankRayal

Read the original blog entry...

More Stories By Deborah Strickland

The articles presented here are blog posts from members of our Service Provider Mobility community. Deborah Strickland is a Web and Social Media Program Manager at Cisco. Follow us on Twitter @CiscoSPMobility.

@CloudExpo Stories
Leysin American School is an exclusive, private boarding school located in Leysin, Switzerland. Leysin selected an OpenStack-powered, private cloud as a service to manage multiple applications and provide development environments for students across the institution. Seeking to meet rigid data sovereignty and data integrity requirements while offering flexible, on-demand cloud resources to users, Leysin identified OpenStack as the clear choice to round out the school's cloud strategy. Additional...
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com...
We are all here because we are sold on the transformative promise of The Cloud. But what good is all of this ephemeral, on-demand infrastructure if your usage doesn't actually improve the agility and speed of your business? How must Operations adapt in order to avoid stifling your Cloud initiative? In his session at DevOps Summit, Damon Edwards, co-founder and managing partner of the DTO Solutions, will highlight the successful organizational, process, and tooling patterns of high-performing c...
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from ha...
Software-driven innovation is becoming a primary approach to how businesses create and deliver new value to customers. A survey of 400 business and IT executives by the IBM Institute for Business Value showed businesses that are more effective at software delivery are also more profitable than their peers nearly 70 percent of the time (1). DevOps provides a way for businesses to remain competitive, applying lean and agile principles to software development to speed the delivery of software that ...
Docker offers a new, lightweight approach to application portability. Applications are shipped using a common container format and managed with a high-level API. Their processes run within isolated namespaces that abstract the operating environment independently of the distribution, versions, network setup, and other details of this environment. This "containerization" has often been nicknamed "the new virtualization." But containers are more than lightweight virtual machines. Beyond their small...
The move in recent years to cloud computing services and architectures has added significant pace to the application development and deployment environment. When enterprise IT can spin up large computing instances in just minutes, developers can also design and deploy in small time frames that were unimaginable a few years ago. The consequent move toward lean, agile, and fast development leads to the need for the development and operations sides to work very closely together. Thus, DevOps become...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.

ARMONK, N.Y., Nov. 20, 2014 /PRNewswire/ --  IBM (NYSE: IBM) today announced that it is bringing a greater level of control, security and flexibility to cloud-based application development and delivery with a single-tenant version of Bluemix, IBM's

An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and asse...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Ar...
Technology is enabling a new approach to collecting and using data. This approach, commonly referred to as the "Internet of Things" (IoT), enables businesses to use real-time data from all sorts of things including machines, devices and sensors to make better decisions, improve customer service, and lower the risk in the creation of new revenue opportunities. In his General Session at Internet of @ThingsExpo, Dave Wagstaff, Vice President and Chief Architect at BSQUARE Corporation, discuss the ...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, a...
"BSQUARE is in the business of selling software solutions for smart connected devices. It's obvious that IoT has moved from being a technology to being a fundamental part of business, and in the last 18 months people have said let's figure out how to do it and let's put some focus on it, " explained Dave Wagstaff, VP & Chief Architect, at BSQUARE Corporation, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The 4th International DevOps Summit, co-located with16th International Cloud Expo – being held June 9-11, 2015, at the Javits Center in New York City, NY – announces that its Call for Papers is now open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's large...
Verizon Enterprise Solutions is simplifying the cloud-purchasing experience for its clients, with the launch of Verizon Cloud Marketplace, a key foundational component of the company's robust ecosystem of enterprise-class technologies. The online storefront will initially feature pre-built cloud-based services from AppDynamics, Hitachi Data Systems, Juniper Networks, PfSense and Tervela. Available globally to enterprises using Verizon Cloud, Verizon Cloud Marketplace provides a one-stop shop fo...
"Our premise is Docker is not enough. That's not a bad thing - we actually love Docker. At ActiveState all our products are based on open source technology and Docker is an up-and-coming piece of open source technology," explained Bart Copeland, President & CEO of ActiveState Software, in this SYS-CON.tv interview at DevOps Summit at Cloud Expo®, held Nov 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete...
Infor has announced a new feature Infor CloudSuite™ Aerospace & Defense (A&D) to aid compliance with International Traffic in Arms Regulations (ITAR). The ITAR function will serve as a complementary function for new or existing Infor CloudSuite A&D customers, to facilitate compliance for Infor customers that are creating a US defense article or performing a US defense service and wish to benefit from cloud-services. The ITAR regulation serves to manage handling and access requirements for dat...
What do a firewall and a fortress have in common? They are no longer strong enough to protect the valuables housed inside. Like the walls of an old fortress, the cracks in the firewall are allowing the bad guys to slip in - unannounced and unnoticed. By the time these thieves get in, the damage is already done and the network is already compromised. Intellectual property is easily slipped out the back door leaving no trace of forced entry. If we want to reign in on these cybercriminals, it's hig...