Welcome!

AJAX & REA Authors: Liz McMillan, Elizabeth White, David H Deans, Pat Romanski, Scott Hirsch

Related Topics: Java, XML, SOA & WOA, AJAX & REA, Oracle, Security

Java: Article

Java Cryptography | Part 2

Encryption and Digital Signatures

In today's environment, information security is crucial for everyone. Security needs vary widely from protecting social security numbers to guarding corporate strategy. Information espionage can occur at all levels. A human resources employee or manager takes employee personnel files home to work on them and unfortunately loses them or they get stolen. An employee's notes to a supervisor regarding a case are intercepted and read via monitoring software by an outside hacker. The resulting damages can be costly and could be avoided by protecting assets with encryption technology.

This article demonstrates the implementation of the Cryptography header cited in the previous article and illustrates how to encrypt and digitally sign files using a hybrid combination of asymmetric public/private key encryption and symmetric encryption. A symmetric key is used to encrypt the file and the asymmetric public key encrypts the symmetric key. The asymmetric private key decrypts the symmetric key which in turn is used to decrypt the encrypted file.

Figure 1. Asymmetric Key Encryption Functions

The same pair of encryption keys can be used with digital signatures. The private key is used to sign a file and generate a digital signature. The public key is used to verify the authenticity of the signature. The encrypted symmetric key and digital signature along with additional information are stored in the Cryptography header which is affixed to the front of the encrypted file.

Figure 2. Asymmetric Key Signature Functions

The encryption technique requires the Java libraries developed by the Legion of the Bouncy Castle (www.bouncycastle.org). The Bouncy Castle jars, bcprov-jdk15on-147.jar and bcpkix-jdk15on-147.jar, contain all the methods required to encrypt, decrypt, sign and verify a digital signature. The following Java code snippet loads the BouncyCastle provider, which implements the Java Cryptography Security services such as algorithms and key generation.

import org.bouncycastle.jce.provider.*;
java.security.Security.addProvider(new BouncyCastleProvider());

Generating Public/Private Encryption Keys
A Java key store is a password protected file that contains the user's pair of asymmetric encryption keys and certificate. Each key store associates a unique alias to each pair of encryption keys it contains. The Java key store file name is generated as alias_nnnn.jks, for example, jxdoe_fc99.jks. Certificates hold the public encryption key that allows a file to be encrypted for a specific individual who holds the matching deciphering key. The following steps along with Java code snippets illustrate how to generate the pair of public/private keys and store them in a key store file, using the Bouncy Castle cryptography library.

Figure 3. Pair of Asymmetric Keys

Step 1: Create an instance of the KeyPairGenerator class specifying the RSA asymmetric algorithm and Bouncy Castle provider. Generate a 1024-bit asymmetric public and private key pair to be stored in a password protected key store file.

//-Generate the pair of Asymmetric Encryption Keys (public/private)
KeyPairGenerator tKPGen = KeyPairGenerator.getInstance("RSA", "BC");
SecureRandom tRandom = new SecureRandom();
tKPGen.initialize(1024, tRandom); //-Key size in bits
KeyPair tPair = tKPGen.generateKeyPair();
PublicKey tUserPubKey = tPair.getPublic();
PrivateKey tUserPrivKey = tPair.getPrivate();

Step 2: Extract four hex digits from the public key to create a unique alias for the filename of the certificate and key store.

KeyFactory tKeyFactory = KeyFactory.getInstance("RSA");
RSAPublicKeySpec tPubSpec =
tKeyFactory.getKeySpec(tUserPubKey, RSAPublicKeySpec.class);
String t4HexDigits = tPubSpec.getModulus().toString(16).substring(8,12);
String tUniqueAlias = "jxdoe_" + t4HexDigits;

Step 3: Create a certificate to hold the asymmetric public key that can be used to encrypt your confidential information or distributed to others for exchanging encrypted files.

JcaContentSignerBuilder tSignBldr =
new JcaContentSignerBuilder("SHA512WithRSAEncryption");
tSignBldr.setProvider("BC");
ContentSigner tSigGen = tSignBldr.build(tUserPrivKey);
X500NameBuilder tBuilder = new X500NameBuilder(BCStyle.INSTANCE);
tBuilder.addRDN(BCStyle.CN, "John X. Doe"); //-Common name
tBuilder.addRDN(BCStyle.E, "[email protected]"); //-E-mail
tBuilder.addRDN(BCStyle.L, "Detroit"); //-City/Locale
tBuilder.addRDN(BCStyle.ST, "MI"); //-State
org.bouncycastle.asn1.x500.X500Name tX500Name = tBuilder.build();
Calendar tCal = Calendar.getInstance();
tCal.set(2014, 12, 31);
java.util.Date tEnd = tCal.getTime(); //-Ending date for certificate
X509v3CertificateBuilder tV3CertGen = new JcaX509v3CertificateBuilder(
tX500Name,  //-Issuer is same as Subject
BigInteger.valueOf( System.currentTimeMillis()), //-Serial Number
new java.util.Date(), //-Date start
tEnd,     //-Date end
tX500Name,  //-Subject
tUserPubKey); //-Public RSA Key
X509CertificateHolder tCertHolder = tV3CertGen.build(tSigGen);
JcaX509CertificateConverter tConverter =
new JcaX509CertificateConverter().setProvider("BC");
X509Certificate tCert = tConverter.getCertificate(tCertHolder);

Step 4: Save the certificate to disk so that it can be used for encrypting your own personal information or distributing to others.

byte[] tBA = tCert.getEncoded();
File tFile = new File("C:\\" + tUniqueAlias + ".cer");
FileOutputStream tFOS = new FileOutputStream(tFile);
tFOS.write(tBA);
tFOS.close();

Step 5: Insert the certificate into an array of X509 certificates called a chain. Create a password protected key store file to hold the private key and certificate chain and save it to disk. The key store saves the private key and certificate chain as an entry at a unique key called the alias and is password protected as well. The same password will be used to protect the entry and key store.

KeyStore tKStore = KeyStore.getInstance("JKS", "SUN");
tKStore.load(null, null); //-Initialize KeyStore
X509Certificate[] tChain = new X509Certificate[1];
tChain[0] = tCert; //-Put certificate into a chain
tKStore.setKeyEntry(tUniqueAlias,
tUserPrivKey,
"password".toCharArray(),
tChain);
String tKSFileName = "C:\\" + tUniqueAlias + ".jks";
tFOS = new FileOutputStream(tKSFileName);
tKStore.store(tFOS, "password".toCharArray()); //-Set KeyStore password
tFOS.close();

Encryption with Digital Signature
Encryption is used to protect a file from being read by unauthorized eyes by altering its original contents to an indecipherable form. Using a hybrid encryption technique, the file is encrypted with an AES (Advanced Encryption Standard) symmetric key and the key is encrypted using RSA asymmetric encryption. In addition to protecting a file, a digital signature can be added to provide authentication of the originator who sent/encrypted the file. The digital signature is a unique number that is generated using the owner's asymmetric private key and a hash algorithm on the encrypted file contents. The following steps along with Java code snippets illustrate how to encrypt and add a digital signature to a file.

Figure 4: AES Symmetric Key

Step 1: Let's assume you want to encrypt and digitally sign the file, C:\sampleFile.txt. Dynamically generate a symmetric "secret" key using the Java class, KeyGenerator. The symmetric key will be used to encrypt the file. The Java class KeyGenerator is instantiated using the symmetric algorithm, "AES", and provider, BouncyCastle("BC"). The instance of KeyGenerator is initialized with a secure random seed and the maximum key size in bits allowed by your country. The following code illustrates how to generate a symmetric key.

KeyGenerator tKeyGen = KeyGenerator.getInstance("AES", "BC");
SecureRandom tRandom2 = new SecureRandom();
tKeyGen.init(256, tRandom2); //-256 bit AES symmetric key
SecretKey tSymmetricKey = tKeyGen.generateKey();

Step 2: Generate a Cryptography header that stores cryptographic information used to later decrypt the file and verify the digital signature. Save the symmetric algorithm, mode and padding in the header. The following code illustrates the header instantiation and initialization.

CryptoHeader tHead = new CryptoHeader();
tHead.setEncryptFlag(true);
tHead.setSignedFlag(true);
tHead.symKeyAlg(1);   //-AES
tHead.symKeyMode(5);  //-CTR Segmented Integer Counter mode
tHead.symKeyPadding(2); //-PKCS7 Padding
tHead.decryptID(tUniqueAlias); //-Owner's unique alias
tHead.decryptIDLength(tHead.decryptID().length());

Step 3: Load the owner's certificate and extract the public key. You can also load another person's certificate if you are encrypting the file for someone other than yourself. The public key will be used to encrypt the symmetric key.

InputStream tCertIS = new FileInputStream("C:\\" +tUniqueAlias+ ".cer");
CertificateFactory tFactory = CertificateFactory.getInstance("X.509","BC");
X509Certificate tCertificate =
(X509Certificate)tFactory.generateCertificate(tCertIS);
tCertIS.close();
PublicKey tPubKey = tCertificate.getPublicKey();

Step 4: Generate a Java Cipher object and initialize it using the owner's or another person's asymmetric public key extracted from the certificate and set its mode to "Cipher.WRAP_MODE". Use the Java Cipher and public key to encrypt and wrap the symmetric key. Store the wrapped encrypted key in the header and its length.

Cipher tCipherRSA = Cipher.getInstance("RSA", "BC");
tCipherRSA.init(Cipher.WRAP_MODE, (PublicKey)tPubKey);
byte[] tWrappedKey = tCipherRSA.wrap(tSymmetricKey);
tHead.wrappedSymKey(tWrappedKey);
tHead.wrappedSymKeyLength(tWrappedKey.length);

Figure 5. Wrap Symmetric Key

Step 5: Generate an initialization vector if required by the symmetric mode chosen to encrypt the file. AES is a block cipher symmetric algorithm and the Counter (CTR) mode requires an initialization vector. The AES block size is 16 bytes.

int tSize = Cipher.getInstance("AES", "BC").getBlockSize();
byte[] tInitVectorBytes = new byte[tSize];
SecureRandom tRandom3 = new SecureRandom();
tRandom3.nextBytes(tInitVectorBytes);
IvParameterSpec tIVSpec = new IvParameterSpec(tInitVectorBytes);

Figure 6. Initialization Vector

Step 6: Use the previously instantiated Cipher and set its mode to "Cipher.ENCRYPT_MODE". Use the public key to encrypt the initialization vector. Store the encrypted vector in the header along with its length.

tCipherRSA.init(Cipher.ENCRYPT_MODE, (PublicKey)tPubKey);
byte[] tInitVectorEncrypted = tCipherRSA.doFinal(tIVSpec.getIV());
tHead.initVector(tInitVectorEncrypted);
tHead.initVectorLength(tInitVectorEncrypted.length);

Figure 7. Wrap Initialization Vector

Step 7:(Optional) If you are using an enterprise CA hierarchy and encrypting for yourself, use the CA asymmetric public key stored in the key store to wrap the symmetric key and encrypt the initialization vector and store both in the header. If encrypting for another person, use the owner's asymmetric key to wrap the symmetric key and encrypt the initialization vector and store both in the header. You can store the values in the header variables, wrappedSymKeyOther and initVectorOther as well as their lengths. This provides the ability for the CA or owner to decrypt the encrypted file.

Step 8: The private key is stored in a Java key store and is password protected. Load the key store using your password. Retrieve the asymmetric private key from the key store using the same password. The asymmetric private key will be used to generate a digital signature and stored in the header.

FileInputStream tStoreFIS=new FileInputStream("C:\\"+tUniqueAlias+".jks");
KeyStore tMyKStore = KeyStore.getInstance("JKS", "SUN");
char[] tPW = "password".toCharArray();
tMyKStore.load(tStoreFIS, tPW);
PrivateKey tPrivKey = (PrivateKey)tMyKStore.getKey(tUniqueAlias, tPW);

Figure 8. Private Key

Step 9: Generate a Java Signature object specifying the signature algorithm and provider. Initialize the signature engine with the owner's asymmetric private key. The signature engine is bound to the private key so that only the public key can validate it. Store the signature algorithm in the header so that it can be verified later.

Signature tSigEngine =
Signature.getInstance("SHA512WithRSAEncryption", "BC");
tSigEngine.initSign(tPrivKey);
tHead.signatureAlg(12); //-SHA512WithRSAEncryption

Step 10: Generate a Java Cipher object based on the symmetric algorithm, mode, padding and provider which will be used to encrypt the target file. Initialize the Cipher object using the symmetric key and initialization vector and set its mode to "Cipher.ENCRYPT_MODE".

Cipher tCipherEncrypt = Cipher.getInstance("AES/CTR/PKCS7Padding", "BC");
tCipherEncrypt.init(Cipher.ENCRYPT_MODE, tSymmetricKey, tIVSpec);

Step 11: Load the file to be encrypted as a Java "FileInputStream". Encrypt the file to a temporary Java "FileOutputStream" using the Java Cipher, symmetric key and initialization vector and in parallel, sign the encrypted data with the signature engine. The stream is processed a buffer at a time till the end of the file is reached. The end result is an encrypted and digitally signed temporary file.

FileOutputStream tFileOS = new FileOutputStream("C:\\$$$$$$$$.tmp");
InputStream tFileIS = new FileInputStream("C:\\sampleFile.txt");
byte[] tInBuffer = new byte[4096];
byte[] tOutBuffer = new byte[4096];
int tNumOfBytesRead = tFileIS.read(tInBuffer);
while (tNumOfBytesRead == tInBuffer.length) {
//-Encrypt the input buffer data and store in the output buffer
int tNumOfBytesUpdated =
tCipherEncrypt.update(tInBuffer, 0, tInBuffer.length, tOutBuffer);
//-Sign the encrypted data in the output buffer
tSigEngine.update(tOutBuffer, 0, tNumOfBytesUpdated);
tFileOS.write(tOutBuffer, 0, tNumOfBytesUpdated);
tNumOfBytesRead = tFileIS.read(tInBuffer);
}
//-Process the remaining bytes in the input file.
if (tNumOfBytesRead > 0) {
tOutBuffer = tCipherEncrypt.doFinal(tInBuffer, 0, tNumOfBytesRead);
} else {
tOutBuffer = tCipherEncrypt.doFinal();
}
tSigEngine.update(tOutBuffer); //-Sign the remaining bytes
tFileOS.write(tOutBuffer, 0, tOutBuffer.length);
tFileOS.close(); //-Close the temporary file
tFileIS.close(); //-Close input file

Figure 9. Encrypt and Sign the File

The code can be made more efficient by allocating larger buffers and writing out the encrypted data after a threshold has been reached.

Step 12: Generate the digital signature from the signature engine after signing the file and store it in the header along with its length. Save the signature algorithm, signature certificate name and its length in the header.

byte[] tSignature = tSigEngine.sign();
tHead.signature(tSignature);
tHead.signatureLength(tSignature.length);
tHead.verifySigCertName(tUniqueAlias + ".cer");
tHead.verifySigCertNameLength(tHead.verifySigCertName().length());

Step 13: Calculate the total size of the header and save in the header along with its version. Write the header into a ByteArrayOutputStream, which can be converted to a byte array. The Cryptography header class contains a method to write out the header to a ByteArrayOutputStream. Write out the byte array to a file using a Java "FileOutputStream."

ByteArrayOutputStream tHeadBAOS = new ByteArrayOutputStream();
Object tRC = tHead.writeOutHeaderV4(new DataOutputStream(tHeadBAOS));
String tEncryptedFileName = "C:\\sampleFile.txt." + tUniqueAlias + ".asg";
FileOutputStream tFileOStream = new FileOutputStream(tEncryptedFileName);
byte[] tArray = tHeadBAOS.toByteArray();
tFileOStream.write(tArray, 0, tArray.length);

Step 14: Append the temporary "encrypted" file to the output stream. The end result is an encrypted file with a digital signature. Note that the file extension is "ASG" instead of "AES" to imply that it is encrypted and digitally signed. The temporary file though encrypted should be securely deleted afterwards by overwriting it.

tInStream = new FileInputStream("C:\\$$$$$$$$.tmp");
byte[] tBuffer = new byte[4096];
int tLength = tInStream.read(tBuffer);
while (tLength > 0) {
tFileOStream.write(tBuffer, 0, tLength);
tLength = tInStream.read(tBuffer);
}
tFileOStream.close();
tInstream.close();

Summary

This article demonstrates how to encrypt and digitally sign any file using Java Cryptography methods and the Cryptography libraries from Bouncy Castle organization. The Cryptography header provides information required to decipher the file and validate who encrypted its contents. The header also provides the flexibility to expand the usage of Cryptography such as allowing multiple recipients to decrypt a file by using each of their public keys to encrypt the same symmetric key. As society adopts file encryption as a standard way of protection, more creative uses will be invented by future Cyber warriors.

The source code (LaCryptoJarSample.java) is available on the Logical Answers Inc. website under the education web page as an individual file and also within the zip file, laCrypto-4.2.0.zipx.

References and Other Technical Notes
Software requirements:

  • Computer running Windows XP or higher...
  • Java Runtime (JRE V1.7 or higher)

Recommended reading:

  • "Beginning Cryptography with Java" by David Hook.
  • "The Code Book" by Simon Singh

More Stories By James H. Wong

James H. Wong has been involved in the technology field for over 30 years and has dual MS degrees in mathematics and computer science from the University of Michigan. He worked for IBM for almost 10 years designing and implementing software. Founding Logical Answers Corp in 1992, he has provided technical consulting/programming services to clients, providing their business with a competitive edge. With his partner they offer a Java developed suite of “Secure Applications” that protect client’s data using the standard RSA (asymmetric) and AES (symmetric) encryption algorithms.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@CloudExpo Stories
We are all here because we are sold on the transformative promise of The Cloud. But what good is all of this ephemeral, on-demand infrastructure if your usage doesn't actually improve the agility and speed of your business? How must Operations adapt in order to avoid stifling your Cloud initiative? In his session at DevOps Summit, Damon Edwards, co-founder and managing partner of the DTO Solutions, will highlight the successful organizational, process, and tooling patterns of high-performing c...
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from ha...
Software-driven innovation is becoming a primary approach to how businesses create and deliver new value to customers. A survey of 400 business and IT executives by the IBM Institute for Business Value showed businesses that are more effective at software delivery are also more profitable than their peers nearly 70 percent of the time (1). DevOps provides a way for businesses to remain competitive, applying lean and agile principles to software development to speed the delivery of software that ...
Docker offers a new, lightweight approach to application portability. Applications are shipped using a common container format and managed with a high-level API. Their processes run within isolated namespaces that abstract the operating environment independently of the distribution, versions, network setup, and other details of this environment. This "containerization" has often been nicknamed "the new virtualization." But containers are more than lightweight virtual machines. Beyond their small...
The move in recent years to cloud computing services and architectures has added significant pace to the application development and deployment environment. When enterprise IT can spin up large computing instances in just minutes, developers can also design and deploy in small time frames that were unimaginable a few years ago. The consequent move toward lean, agile, and fast development leads to the need for the development and operations sides to work very closely together. Thus, DevOps become...

ARMONK, N.Y., Nov. 20, 2014 /PRNewswire/ --  IBM (NYSE: IBM) today announced that it is bringing a greater level of control, security and flexibility to cloud-based application development and delivery with a single-tenant version of Bluemix, IBM's

An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and asse...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Ar...
Leysin American School is an exclusive, private boarding school located in Leysin, Switzerland. Leysin selected an OpenStack-powered, private cloud as a service to manage multiple applications and provide development environments for students across the institution. Seeking to meet rigid data sovereignty and data integrity requirements while offering flexible, on-demand cloud resources to users, Leysin identified OpenStack as the clear choice to round out the school's cloud strategy. Additional...
Technology is enabling a new approach to collecting and using data. This approach, commonly referred to as the "Internet of Things" (IoT), enables businesses to use real-time data from all sorts of things including machines, devices and sensors to make better decisions, improve customer service, and lower the risk in the creation of new revenue opportunities. In his General Session at Internet of @ThingsExpo, Dave Wagstaff, Vice President and Chief Architect at BSQUARE Corporation, discuss the ...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, a...
"BSQUARE is in the business of selling software solutions for smart connected devices. It's obvious that IoT has moved from being a technology to being a fundamental part of business, and in the last 18 months people have said let's figure out how to do it and let's put some focus on it, " explained Dave Wagstaff, VP & Chief Architect, at BSQUARE Corporation, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The 4th International DevOps Summit, co-located with16th International Cloud Expo – being held June 9-11, 2015, at the Javits Center in New York City, NY – announces that its Call for Papers is now open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's large...
Verizon Enterprise Solutions is simplifying the cloud-purchasing experience for its clients, with the launch of Verizon Cloud Marketplace, a key foundational component of the company's robust ecosystem of enterprise-class technologies. The online storefront will initially feature pre-built cloud-based services from AppDynamics, Hitachi Data Systems, Juniper Networks, PfSense and Tervela. Available globally to enterprises using Verizon Cloud, Verizon Cloud Marketplace provides a one-stop shop fo...
"Our premise is Docker is not enough. That's not a bad thing - we actually love Docker. At ActiveState all our products are based on open source technology and Docker is an up-and-coming piece of open source technology," explained Bart Copeland, President & CEO of ActiveState Software, in this SYS-CON.tv interview at DevOps Summit at Cloud Expo®, held Nov 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete...
What do a firewall and a fortress have in common? They are no longer strong enough to protect the valuables housed inside. Like the walls of an old fortress, the cracks in the firewall are allowing the bad guys to slip in - unannounced and unnoticed. By the time these thieves get in, the damage is already done and the network is already compromised. Intellectual property is easily slipped out the back door leaving no trace of forced entry. If we want to reign in on these cybercriminals, it's hig...
Infor has announced a new feature Infor CloudSuite™ Aerospace & Defense (A&D) to aid compliance with International Traffic in Arms Regulations (ITAR). The ITAR function will serve as a complementary function for new or existing Infor CloudSuite A&D customers, to facilitate compliance for Infor customers that are creating a US defense article or performing a US defense service and wish to benefit from cloud-services. The ITAR regulation serves to manage handling and access requirements for dat...