Welcome!

IoT User Interface Authors: Elizabeth White, John Basso, Dana Gardner, Liz McMillan, Jason Bloomberg

Related Topics: @BigDataExpo, Microservices Expo, Containers Expo Blog, Agile Computing, @CloudExpo, Apache

@BigDataExpo: Article

Babies, Big Data, and IT Analytics

Machine learning is a topic that has gone from obscure niche to mainstream visibility over the last few years

Machine learning and IT analytics can be just as beneficial to IT operations as it is for monitoring vital signs of premature babies to identify danger signs too subtle or abnormal to be detected by a human. But an enterprise must be willing to implement monitoring and instrumentation that gathers data and incorporates business activity across organizational silos in order to get meaningful results from machine learning.

Machine learning is a topic that has gone from obscure niche to mainstream visibility over the last few years. High profile software companies like Splunk have tapped into the Big Data "explosion" to highlight the benefits of building systems that use algorithms and data to make decisions and evolve over time.

One recent article on machine learning on the O'Reilly Radar blog that caught my attention made a connection between web operations and medical care for premature infants. "Operations, machine learning, and premature babies" by Mike Loukides describes how machine learning is used to analyze data streamed from dozens of monitors connected to each baby. The algorithms are able to detect dangerous infections a full day before any symptoms are noticeable to a human.

An interesting point from the article is that the machine learning system is not looking for spikes or irregularities in the data; it is actually looking for the opposite. Babies who are about to become sick stop exhibiting the normal variations in vital signs shown by healthy babies. It takes a machine learning system to detect changes in behavior too subtle for a human to notice.

Mike Loukides then wonders whether machine learning can be applied to web operations. Typical performance monitoring focuses on thresholds to identify a problem. "But what if crossing a threshold isn't what indicates trouble, but the disappearance (or diminution) of some regular pattern?" Machine learning could identify symptoms that a human fails to identify because he's just looking for thresholds to be crossed.

Mike's conclusion sums up much of the state of the IT industry concerning machine learning:

At most enterprises, operations have not taken the next step. Operations staff doesn't have the resources (neither computational nor human) to apply machine intelligence to our problems. We'd have to capture all the data coming off our servers for extended periods, not just the server logs that we capture now, but any every kind of data we can collect: network data, environmental data, I/O subsystem data, you name it.

As someone who works for a company that applies a form of machine learning (Behavior Learning for predictive analytics) to IT operations and application performance management, I read this with great interest. I didn't necessarily disagree with his conclusion but tried to pull apart the reasoning behind why more companies aren't applying algorithms to their IT data to look for problems.

There are at least three requirements for companies who want to move ahead in this area:

1. Establish maturity of one's monitoring infrastructure. This is the most fundamental point. If you want to apply machine intelligence to IT operations then you need to first add instrumentation and monitoring. Numerous monitoring products and approaches abound but you have to get the data before you can analyze it.

2. Coordinate multiple enterprise silos. Modern IT applications are increasingly complex and may cross multiple enterprise silos such as server virtualization, network, databases, application development, and other middleware components. Enterprises must be willing to coordinate between these multiple groups in gathering monitoring data and performing cross-functional troubleshooting when there are performance or uptime issues.

3. Incorporate business activity monitoring (BAM). Business activity data provides the "vital signs" of a business. Examples of retail business activity data include number of units sold, total gross sales, and total net sales for a time period. Knowing the true business impact of an application performance problem requires the correlation of business data. When an outage occurred for 20 minutes, how many fewer units were sold? What was the reduction in gross and net sales?

An organization that can fulfill these requirements is capable of achieving real benefits in IT operations and can successfully apply analytics. Gartner has established the ITScore Maturity Model for determining one's sophistication in availability and performance monitoring. Here is the description for level 5, which is the top tier:

Behavior Learning engines, embedded knowledge, advanced correlation, trend analysis, pattern matching, and integrated IT and business data from sources such as BAM provide IT operations with the ability to dynamically manage the IT infrastructure in line with business policy.

Applying machine learning to IT operations isn't easy. Most enterprises don't do it because they need to overcome organizational inertia and gather data from multiple groups scattered throughout the enterprise. For the organizations willing to do this, however, they will see tangible business benefits. Just as a hospital could algorithmically detect the failing health of a premature infant, an enterprise willing to use machine learning will visibly see how abnormal problems within IT operations can impact revenue.

More Stories By Richard Park

Richard Park is Director of Product Management at Netuitive. He currently leads Netuitive's efforts to integrate with application performance and cloud monitoring solutions. He has nearly 20 years of experience in network security, database programming, and systems engineering. Some past jobs include product management at Sourcefire and Computer Associates, network engineering and security at Booz Allen Hamilton, and systems engineering at UUNET Technologies (now part of Verizon). Richard has an MS in Computer Science from Johns Hopkins, an MBA from Harvard Business School, and a BA in Social Studies from Harvard University.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@CloudExpo Stories
SaaS companies can greatly expand revenue potential by pushing beyond their own borders. The challenge is how to do this without degrading service quality. In his session at 18th Cloud Expo, Adam Rogers, Managing Director at Anexia, discussed how IaaS providers with a global presence and both virtual and dedicated infrastructure can help companies expand their service footprint with low “go-to-market” costs.
"Avere Systems is a hybrid cloud solution provider. We have customers that want to use cloud storage and we have customers that want to take advantage of cloud compute," explained Rebecca Thompson, VP of Marketing at Avere Systems, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
IoT generates lots of temporal data. But how do you unlock its value? You need to discover patterns that are repeatable in vast quantities of data, understand their meaning, and implement scalable monitoring across multiple data streams in order to monetize the discoveries and insights. Motif discovery and deep learning platforms are emerging to visualize sensor data, to search for patterns and to build application that can monitor real time streams efficiently. In his session at @ThingsExpo, ...
Ovum, a leading technology analyst firm, has published an in-depth report, Ovum Decision Matrix: Selecting a DevOps Release Management Solution, 2016–17. The report focuses on the automation aspects of DevOps, Release Management and compares solutions from the leading vendors.
"This week we're really focusing on scalability, asset preservation and how do you back up to the cloud and in the cloud with object storage, which is really a new way of attacking dealing with your file, your blocked data, where you put it and how you access it," stated Jeff Greenwald, Senior Director of Market Development at HGST, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
When it comes to cloud computing, the ability to turn massive amounts of compute cores on and off on demand sounds attractive to IT staff, who need to manage peaks and valleys in user activity. With cloud bursting, the majority of the data can stay on premises while tapping into compute from public cloud providers, reducing risk and minimizing need to move large files. In his session at 18th Cloud Expo, Scott Jeschonek, Director of Product Management at Avere Systems, discussed the IT and busin...
There will be new vendors providing applications, middleware, and connected devices to support the thriving IoT ecosystem. This essentially means that electronic device manufacturers will also be in the software business. Many will be new to building embedded software or robust software. This creates an increased importance on software quality, particularly within the Industrial Internet of Things where business-critical applications are becoming dependent on products controlled by software. Qua...
Continuous testing helps bridge the gap between developing quickly and maintaining high quality products. But to implement continuous testing, CTOs must take a strategic approach to building a testing infrastructure and toolset that empowers their team to move fast. Download our guide to laying the groundwork for a scalable continuous testing strategy.
As companies gain momentum, the need to maintain high quality products can outstrip their development team’s bandwidth for QA. Building out a large QA team (whether in-house or outsourced) can slow down development and significantly increases costs. This eBook takes QA profiles from 5 companies who successfully scaled up production without building a large QA team and includes: What to consider when choosing CI/CD tools How culture and communication can make or break implementation
SYS-CON Events has announced today that Roger Strukhoff has been named conference chair of Cloud Expo and @ThingsExpo 2016 Silicon Valley. The 19th Cloud Expo and 6th @ThingsExpo will take place on November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. "The Internet of Things brings trillions of dollars of opportunity to developers and enterprise IT, no matter how you measure it," stated Roger Strukhoff. "More importantly, it leverages the power of devices and the Interne...
"We formed Formation several years ago to really address the need for bring complete modernization and software-defined storage to the more classic private cloud marketplace," stated Mark Lewis, Chairman and CEO of Formation Data Systems, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Machine Learning helps make complex systems more efficient. By applying advanced Machine Learning techniques such as Cognitive Fingerprinting, wind project operators can utilize these tools to learn from collected data, detect regular patterns, and optimize their own operations. In his session at 18th Cloud Expo, Stuart Gillen, Director of Business Development at SparkCognition, discussed how research has demonstrated the value of Machine Learning in delivering next generation analytics to imp...
Most organizations prioritize data security only after their data has already been compromised. Proactive prevention is important, but how can you accomplish that on a small budget? Learn how the cloud, combined with a defense and in-depth approach, creates efficiencies by transferring and assigning risk. Security requires a multi-defense approach, and an in-house team may only be able to cherry pick from the essential components. In his session at 19th Cloud Expo, Vlad Friedman, CEO/Founder o...
Organizations planning enterprise data center consolidation and modernization projects are faced with a challenging, costly reality. Requirements to deploy modern, cloud-native applications simultaneously with traditional client/server applications are almost impossible to achieve with hardware-centric enterprise infrastructure. Compute and network infrastructure are fast moving down a software-defined path, but storage has been a laggard. Until now.
"We host and fully manage cloud data services, whether we store, the data, move the data, or run analytics on the data," stated Kamal Shannak, Senior Development Manager, Cloud Data Services, IBM, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
With over 720 million Internet users and 40–50% CAGR, the Chinese Cloud Computing market has been booming. When talking about cloud computing, what are the Chinese users of cloud thinking about? What is the most powerful force that can push them to make the buying decision? How to tap into them? In his session at 18th Cloud Expo, Yu Hao, CEO and co-founder of SpeedyCloud, answered these questions and discussed the results of SpeedyCloud’s survey.
In addition to all the benefits, IoT is also bringing new kind of customer experience challenges - cars that unlock themselves, thermostats turning houses into saunas and baby video monitors broadcasting over the internet. This list can only increase because while IoT services should be intuitive and simple to use, the delivery ecosystem is a myriad of potential problems as IoT explodes complexity. So finding a performance issue is like finding the proverbial needle in the haystack.
With the proliferation of both SQL and NoSQL databases, organizations can now target specific fit-for-purpose database tools for their different application needs regarding scalability, ease of use, ACID support, etc. Platform as a Service offerings make this even easier now, enabling developers to roll out their own database infrastructure in minutes with minimal management overhead. However, this same amount of flexibility also comes with the challenges of picking the right tool, on the right ...
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and shared the must-have mindsets for removing complexity from the develo...
SYS-CON Events announced today that MangoApps will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. MangoApps provides modern company intranets and team collaboration software, allowing workers to stay connected and productive from anywhere in the world and from any device.