Welcome!

IoT User Interface Authors: Pat Romanski, XebiaLabs Blog, Elizabeth White, William Schmarzo, John Basso

Related Topics: Java IoT, Industrial IoT, Microservices Expo, IBM Cloud, Weblogic, IoT User Interface, Apache

Java IoT: Article

Componentizing a Monolithic Application in Java

Using a simple homegrown component model and framework

Component-oriented development has many architectural advantages. In spite of this, many developers tend to solve problems the monolithic way on the first go. This article demonstrates how a monolithic design can be modified to achieve component-based design. During this conversion process, the necessity of Component Models and Frameworks are highlighted. The article demonstrates the componentization of an example monolithic application using a simple homegrown component model and framework developed by the authors.

Introducing E-Store - A Business Application
Let us assume that we need to implement a simple E-store business application. The application needs to cater to the following simple business use cases for a single actor - the consumer.

  • Browse the catalog of products - Consumer can browse through the items in the store. E-store app displays the different products available in the store along with their price
  • Buy one or more products - User adds one or more quantities of a product to the shopping cart. If sufficient stock is available, E-Store app adds the selected items to the shopping cart
  • Check-out - User can checkout with the items in the shopping cart. E-store app displays the total price of all the items in the shopping cart. Subsequently, stock quantities of the purchased items are reduced

Monolithic Implementation of E-Store
The E-Store application explained above can be realized with the help of the classes shown in Figure 1.

Figure 1: Class Diagram for E-Store Application

The implementation of the above design in source code and binary code form can be obtained from the links provided at the end of the article. The implementation of the monolithic application is explained briefly in the sections below.

Application Startup - UI
The monolithic E-Store application starts up with the UI class main method. During its startup, the UI class instantiates the Store (E-Store) class. The code snippet corresponding to this is shown in Listing 1.

public class UI {

static Store estore = new Store();

public static void main(String[] args) {
int userChoice = mainMenu();
...
}
...
}

Listing 1: Startup Code - UI Class

The E-Store class instantiates the Inventory and ShoppingCart classes during its startup as shown in Listing 2.

public class Store {

Inventory inventory = new Inventory();
ShoppingCart shoppingCart = new ShoppingCart();
...
}

Listing 2: Startup Code - E-Store Class

The inventory class initializes the stock during its instantiation, by creating instances of Product class objects. The code snippet is shown in Listing 3

public class Inventory {

private Map<Product, Integer> stock = new HashMap<Product, Integer>();

public Inventory() {initStock();}

private void initStock() {
Product newIPad = new Product("NewIPad", 400.00);
stock.put(newIPad, 50);

Product galaxyTab2 = new Product("GalaxyTab2", 300.00);
stock.put(galaxyTab2, 75);

Product kindleFire = new Product("KindleFire", 250.00);
stock.put(kindleFire, 30);
}
...

}

Listing 3: Startup Code - Inventory Initialization

Once the startup is done, the UI class presents a console based menu as shown in Listing 4.

Welcome to eStore!
------------------------

1. Browse Catalog
2. Buy Items
3. Check Out
4. Exit

Choose an option:
1

Listing 4: Console based UI Menu

When the user chooses any one of the options, the UI class calls upon its implementation in the E-Store business class. The implementation of each of these is explained briefly in next few sections.

Browse Catalog Use case Realization
The getCatalog() method in the E-Store class implements this use case. When the getCatalog() method in E-Store class is called, it fetches the list of products from Inventory and returns the same. Code snippet is shown in Listing 5.

public Collection<Product> getCatalog() {

return inventory.getProducts();

}

Listing 5: E-Store Class - getCatalog() implementation

Buy Items Use case Realization
The buyItem() method in the E-Store class implements this use case. The UI class calls this method by passing the name of the product chosen by the user, and the quantity he wants to buy. If sufficient quantity is available in stock, the item is added to the shopping cart and the method returns success; otherwise, the method returns failure and no item is added to shopping cart. The code snippet is presented in Listing 6.

public boolean buyItem(String name, int quantity) {
Product product = inventory.getProduct(name);
if (product == null) return false;

if (inventory.getStock(product) >= quantity) {
shoppingCart.addItem(product, quantity);
return true;
}
return false;
}

Listing 6: E-Store Class - buyItem() implementation

Check Out Use Case Realization
The checkout() method in the E-Store class implements this use case. It reduces the stock in the inventory by the quantity bought. It also returns the total price to be paid by the user. This implementation is shown in Listing 7.

public double checkOut() {
for(Product product : shoppingCart.getItems()) {
int quantity = shoppingCart.getCount(product);
inventory.reduceStock(product, quantity);
}
double price = shoppingCart.getTotalPrice();
shoppingCart.clearItems();
return price;

}

Listing 7: E-Store Class - checkOut() Implementation

What's wrong with the Monolithic implementation?
The initial implementation of E-Store discussed above fulfills all the functional requirements of the application laid down earlier. Still this is not considered as architecturally sound application design because all the classes in the application are tightly coupled to each other. Consider the dependency metrics shown in the table below:

Table 1: Class dependency details

No.

Class

Depends On

# of Dependencies

Dependency Depth

1.

Product

 

0

0

2.

Inventory

Product

1

1

3.

ShoppingCart

Product

1

1

4.

EStore

Inventory, ShoppingCart, Product

3

2

5.

UI

EStore, Product

2

3

 

 

 

 

 

The tight coupling results in high resistance to change in implementation. For example, any change to Product class will require complete change in the application.

Let us say that the E-Store likes to announce promotional sale for three days. During these three days, the total price of the shopping cart should be discounted by 10%. In order to achieve this, we need to change the ShoppingCart class implementation. When the ShoppingCart class is changed, the E-Store class also needs to be recompiled. When the E-Store class is recompiled, the UI class also needs to be recompiled.

What happens at the end of the promotional sale when the E-Store wants to discontinue the discounts? We need to recompile all the 3 classes one more time. Ideally, since the changes affect only the ShoppingCart behavior, rest of the application modules should not have been affected. But due to the tight coupling, other modules are also affected.

Loosening the Coupling through Componentization
Low coupling design principle suggests that there should not be tight coupling among unstable entities. Having dependency on a relatively stable entity does not bring forth the evils of tight coupling.

In order to make the application modules loosely coupled, we need to componentize the application. A component is a deployable piece of software that would be independently developed and independently maintained. Independence here refers to development and maintenance of a component independent of the other components which collaborate with this component in an application assembly. In a component based application, change to one component should not directly affect the application.

We avoid tight coupling between components by introducing the abstraction of Component Interface. A component interface exposes the signature of the functionalities implemented by component. The Component Interface will be a relatively stable entity as compared to the Component Implementation.

A component consumes interfaces that it depends on for fulfilling the required functionality and provides interfaces for the functionality it provides. For collaboration with the other components, the component would work through the interfaces provided by the other components. Practically, the component should not depend on the implementation of the other components; it should depend only on the interfaces provided by those components. This way, the coupling among components is through the relatively stable interfaces and not through the highly instable implementations. Thus the principle of low coupling is upheld.

In addition to the low coupling achieved, componentization of a monolithic application also brings about substitutability of components. This means a component of the application can be substituted by another component without affecting the overall application. The only requirement is that the replacing component must offer the same set of interfaces as was offered by the component being replaced.

Componentizing the E-Store Application
We need to introduce the Component Interface abstraction in the monolithic design shown in Figure 1. Looking at the dependency details represented in the Table 1, the Product, ShoppingCart, Inventory and Store classes should be represented as components. From the implementation classes of Product, Inventory, ShoppingCart, and Store, we can extract Java Interfaces IProduct, IInventory, IShoppingCart, and IStore respectively using the refactoring tools in the IDE. The extracted interfaces are shown in Figure 2. It must be noted in Figure 9 that the method signatures in IInventory, IShoppingCart, and IStore are changed to refer to IProduct interface in place of the Product class in the corresponding methods in Figure 1.

Figure 2: E-Store Interfaces - Class Diagram

In this E-Store application, there are four components represented by their interfaces - IProduct, IInventory, IShoppingCart and IStore. After the interfaces are extracted from the monolithic implementation, it will be a good design to get these interfaces packaged into a separate Java Package called estore.ifce.

The package can also be compiled to a JAR resulting in a deployable and independently maintainable estore.ifce module. This module does not implement any component, but it simply defines ONLY the interfaces which would be implemented by other components in the application. All the components depend ONLY on this common interface module and they need not depend on individual implementation components.

Following the above principle, if we separate the implementation of Product, Inventory, ShoppingCart, and Store into individual packages and into individual JARs, we get the  package structure shown in Figure 3.

Figure 3: Package Diagram separating interface from implementation

When we refactor the code into multiple components as shown above, two code segments fail to compile as shown in Figure 4 and Figure 5. Kindly look at Listings 2 and 3 for reference.

Figure 4: Compilation error in Inventory class post Componentization

Figure 5: Compilation error in Store class post Componentization

The compilation errors occurred due to the fact that above code tried to invoke the implementation code of other components directly. We have arranged our dependencies such that one component would not depend on the internal implementation of the other component. The above code violates this.

This problem can be solved in various ways. This is where all the component models and frameworks come to the rescue. Component models like RMI, EJB, Spring, OSGi and SCA have their own way of creating object references to components from the interfaces. Users can choose to use one of these frameworks or models for initializing the component. However in this article, we will look at a simple component model developed to solve this problem without using any of the component models and frameworks. This component model uses some of the principles of design pattern and best practices which is explained in detail below.

The problem of direct reference to implementation can be resolved by introducing a ‘Factory' object that can be used by the component to obtain an object of the corresponding type. A generalized Factory object could have a signature as below:

public interface IFactory<T> {
public T createInstance();

}

To avoid tight coupling, the Factory object is really useful. So, instead of coupling to a concrete class which implements IProduct, the Inventory implementation can depend on a Factory object of type IFactory<IProduct>. By invoking the createInstance() method on the factory object, the Inventory class can obtain new IProduct objects. Similarly the IInventory and IShoppingCart objects can be obtained from the respective Factory objects using createInstance() method in the Store class.

IProduct iPad = productFactory.createInstance();
.....
IShoppingCart shoppingCart = shoppingCartFactory.createInstance();
IInventory inventory = inventoryFactory.createInstance();

To obtain a factory object, a FactoryRegistry class is used as a common factory registry for registering and retrieving factory objects using the whiteboard pattern. The common registry object can be implemented as shown in Listing 8.

public class FactoryRegistry {

private static Map<Class<?>, IFactory<?>> factoryMap = new HashMap<Class<?>, IFactory<?>>();

public static void registerFactory(Class<?> ifceClazz, IFactory<?> factory) {
factoryMap.put(ifceClazz, factory);
}

public static IFactory<?> getFactory(Class<?> ifceClazz) {
return factoryMap.get(ifceClazz);
}
}

Listing 8: FactoryRegistry Class

The Inventory class can obtain a reference to a product factory object of type IFactory<IProduct> using the whiteboard pattern. Similarly any factory object can be retrieved from the FactoryRegistry.

IFactory<IProduct> productFactory =
(IFactory<IProduct>) FactoryRegistry.getFactory(IProduct.class);

One important question that remains unanswered is how, where and when these factory objects are registered with the FactoryRegistry. All component implementations only try to GET references. As mentioned earlier, component models like RMI, EJB, OSGi have their own service repository where these references are registered and components using these references look up the repository to get an object of the corresponding type. In this simple model, a registry program named ‘ComponentRunner' is handwritten which will look up for IFactory type interfaces and its implementations and register them appropriately so that getFactory method returns an initialized factory object. Kindly refer to the source code provided for details on ComponentRunner.

Implementation of this model will help in resolving the compilation issue highlighted in Figures 4 and 5. The modified code without any compilation error using the factory pattern and registry lookup is shown in Listings 9 and 10.

private void initStock() {

IFactory<IProduct> productFactory = (IFactory<IProduct>) FactoryRegistry.getFactory(IProduct.class);

IProduct iPad = productFactory.createInstance();
iPad.setName("NewIPad");
iPad.setPrice(400.00);
stock.put(iPad, 50);

IProduct gTab = productFactory.createInstance();
gTab.setName("GalaxyTab2");
gTab.setPrice(300.00);
stock.put(gTab, 75);

IProduct kindle = productFactory.createInstance();
kindle.setName("KindleFire");
kindle.setPrice(250.00);
stock.put(kindle, 30);

}

Listing 9: Modified Inventory Class without compilation error

public class Store implements IStore {

IInventory inventory;
IShoppingCart shoppingCart;

public Store() {
IFactory<IInventory> inventoryFactory = (IFactory<IInventory>) FactoryRegistry.getFactory(IInventory.class);
IFactory<IShoppingCart> shoppingCartFactory = (IFactory<IShoppingCart>) FactoryRegistry.getFactory(IShoppingCart.class);

shoppingCart = shoppingCartFactory.createInstance();
inventory = inventoryFactory.createInstance();
}
......

Listing 10: Modified E-Store Class without compilation error

Apart from the above highlighted modifications, the business logic implementation in the components remains the same as before in the monolithic case.

Executing the Sample Application
The sample application demonstrated in this article is available as a zip file for download. The zip file contains a complete Eclipse Workspace with the source as well as binary files. To run the componentized version of this application, it is required to follow the steps below:

  1. Create a folder named ‘run'.
  2. Export the components - store, product, inventory, shopping cart, component model, store app projects from the eclipse workspace to a Jar file in the ‘run' folder, say ‘eStore.jar' for example. In order to reuse these components in other applications, individual projects can be exported as separate jar files.
  3. Copy the contents of ‘bin' folder from comprunner project to the ‘run' folder. The bin folder contains a sub folder named ‘comprunner' which contains the ComponentRunner class.
  4. Open a command prompt and change the directory to ‘run' folder.
  5. To execute the ComponentRunner, type the following in command prompt

Conclusion
The advantage of a component-oriented approach is well explained with a sample application. In this article, we also saw the limitations of having a monolithic application and how the dependencies bring in tight coupling between components. Low coupling between components can be achieved by the abstraction of Component interface. Interfaces also bring in component substitutability. A component can depend on some interfaces and provide interfaces. Interface is the key mechanism in component design principles. Initialization of component implementations can happen using several mechanisms which are different for different component models and frameworks. In this sample, a home grown component model - a factory based model is used for initializing the components and component references are registered with a simple repository - CompRunner for look up.

More Stories By Piram Manickam

Piram Manickam works at Infosys Limited. He would like to acknowledge and thank Sangeetha S, a beloved colleague and friend, for her invaluable contributions in this work.

More Stories By Subrahmanya SV

Subrahmanya SV works at Infosys Limited. He would like to acknowledge and thank Sangeetha S, a beloved colleague and friend, for her invaluable contributions in this work.

More Stories By S Sangeetha

S Sangeetha is a Senior Technical Architect at the E-Commerce Research Labs at Infosys Limited. She has over 15 years of experience in architecture, design and development of enterprise Java applications. She is also involved in enhancing the technical skills of Architects at Infosys. She has co-authored a book on ‘J2EE Architecture’ and also has written numerous articles on Java for various online Java forums like JavaWorld, java.net, DevX.com and internet.com. She can be reached at [email protected]

Comments (1)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@CloudExpo Stories
Aspose.Total for .NET is the most complete package of all file format APIs for .NET as offered by Aspose. It empowers developers to create, edit, render, print and convert between a wide range of popular document formats within any .NET, C#, ASP.NET and VB.NET applications. Aspose compiles all .NET APIs on a daily basis to ensure that it contains the most up to date versions of each of Aspose .NET APIs. If a new .NET API or a new version of existing APIs is released during the subscription peri...
Security, data privacy, reliability, and regulatory compliance are critical factors when evaluating whether to move business applications from in-house, client-hosted environments to a cloud platform. Quality assurance plays a vital role in ensuring that the appropriate level of risk assessment, verification, and validation takes place to ensure business continuity during the migration to a new cloud platform.
SYS-CON Events announced today that 910Telecom will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Housed in the classic Denver Gas & Electric Building, 910 15th St., 910Telecom is a carrier-neutral telecom hotel located in the heart of Denver. Adjacent to CenturyLink, AT&T, and Denver Main, 910Telecom offers connectivity to all major carriers, Internet service providers, Internet backbones and ...
Ovum, a leading technology analyst firm, has published an in-depth report, Ovum Decision Matrix: Selecting a DevOps Release Management Solution, 2016–17. The report focuses on the automation aspects of DevOps, Release Management and compares solutions from the leading vendors.
Continuous testing helps bridge the gap between developing quickly and maintaining high quality products. But to implement continuous testing, CTOs must take a strategic approach to building a testing infrastructure and toolset that empowers their team to move fast. Download our guide to laying the groundwork for a scalable continuous testing strategy.
Adding public cloud resources to an existing application can be a daunting process. The tools that you currently use to manage the software and hardware outside the cloud aren’t always the best tools to efficiently grow into the cloud. All of the major configuration management tools have cloud orchestration plugins that can be leveraged, but there are also cloud-native tools that can dramatically improve the efficiency of managing your application lifecycle. In his session at 18th Cloud Expo, ...
SYS-CON Events announced today that LeaseWeb USA, a cloud Infrastructure-as-a-Service (IaaS) provider, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. LeaseWeb is one of the world's largest hosting brands. The company helps customers define, develop and deploy IT infrastructure tailored to their exact business needs, by combining various kinds cloud solutions.
Qosmos has announced new milestones in the detection of encrypted traffic and in protocol signature coverage. Qosmos latest software can accurately classify traffic encrypted with SSL/TLS (e.g., Google, Facebook, WhatsApp), P2P traffic (e.g., BitTorrent, MuTorrent, Vuze), and Skype, while preserving the privacy of communication content. These new classification techniques mean that traffic optimization, policy enforcement, and user experience are largely unaffected by encryption. In respect wit...
SYS-CON Events announced today the Kubernetes and Google Container Engine Workshop, being held November 3, 2016, in conjunction with @DevOpsSummit at 19th Cloud Expo at the Santa Clara Convention Center in Santa Clara, CA. This workshop led by Sebastian Scheele introduces participants to Kubernetes and Google Container Engine (GKE). Through a combination of instructor-led presentations, demonstrations, and hands-on labs, students learn the key concepts and practices for deploying and maintainin...
SYS-CON Events announced today that Venafi, the Immune System for the Internet™ and the leading provider of Next Generation Trust Protection, will exhibit at @DevOpsSummit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Venafi is the Immune System for the Internet™ that protects the foundation of all cybersecurity – cryptographic keys and digital certificates – so they can’t be misused by bad guys in attacks...
ReadyTalk has expanded the capabilities of the FoxDen collaboration platform announced late last year to include FoxDen Connect, an in-room video collaboration experience that launches with a single touch. With FoxDen Connect, users can now not only engage in HD video conferencing between iOS and Android mobile devices or Chrome browsers, but also set up in-person meeting rooms for video interactions. A host’s mobile device automatically recognizes the presence of a meeting room via beacon tech...
The cloud market growth today is largely in public clouds. While there is a lot of spend in IT departments in virtualization, these aren’t yet translating into a true “cloud” experience within the enterprise. What is stopping the growth of the “private cloud” market? In his general session at 18th Cloud Expo, Nara Rajagopalan, CEO of Accelerite, explored the challenges in deploying, managing, and getting adoption for a private cloud within an enterprise. What are the key differences between wh...
Deploying applications in hybrid cloud environments is hard work. Your team spends most of the time maintaining your infrastructure, configuring dev/test and production environments, and deploying applications across environments – which can be both time consuming and error prone. But what if you could automate provisioning and deployment to deliver error free environments faster? What could you do with your free time?
Ixia (Nasdaq: XXIA) has announced that NoviFlow Inc.has deployed IxNetwork® to validate the company’s designs and accelerate the delivery of its proven, reliable products. Based in Montréal, NoviFlow Inc. supports network carriers, hyperscale data center operators, and enterprises seeking greater network control and flexibility, network scalability, and the capacity to handle extremely large numbers of flows, while maintaining maximum network performance. To meet these requirements, NoviFlow in...
Choosing the right cloud for your workloads is a balancing act that can cost your organization time, money and aggravation - unless you get it right the first time. Economics, speed, performance, accessibility, administrative needs and security all play a vital role in dictating your approach to the cloud. Without knowing the right questions to ask, you could wind up paying for capacity you'll never need or underestimating the resources required to run your applications.
It’s 2016: buildings are smart, connected and the IoT is fundamentally altering how control and operating systems work and speak to each other. Platforms across the enterprise are networked via inexpensive sensors to collect massive amounts of data for analytics, information management, and insights that can be used to continuously improve operations. In his session at @ThingsExpo, Brian Chemel, Co-Founder and CTO of Digital Lumens, will explore: The benefits sensor-networked systems bring to ...
Extreme Computing is the ability to leverage highly performant infrastructure and software to accelerate Big Data, machine learning, HPC, and Enterprise applications. High IOPS Storage, low-latency networks, in-memory databases, GPUs and other parallel accelerators are being used to achieve faster results and help businesses make better decisions. In his session at 18th Cloud Expo, Michael O'Neill, Strategic Business Development at NVIDIA, focused on some of the unique ways extreme computing is...
On Dice.com, the number of job postings asking for skill in Amazon Web Services increased 76 percent between June 2015 and June 2016. Salesforce.com saw its own skill mentions increase 37 percent, while DevOps and Cloud rose 35 percent and 28 percent, respectively. Even as they expand their presence in the cloud, companies are also looking for tech professionals who can manage projects, crunch data, and figure out how to make systems run more autonomously. Mentions of ‘data science’ as a skill ...
Cloud analytics is dramatically altering business intelligence. Some businesses will capitalize on these promising new technologies and gain key insights that’ll help them gain competitive advantage. And others won’t. Whether you’re a business leader, an IT manager, or an analyst, we want to help you and the people you need to influence with a free copy of “Cloud Analytics for Dummies,” the essential guide to this explosive new space for business intelligence.
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, discussed how leveraging the Industrial Internet a...