Welcome!

Machine Learning Authors: Pat Romanski, Yeshim Deniz, Liz McMillan, Elizabeth White, Zakia Bouachraoui

Related Topics: Containers Expo Blog, Java IoT, Microservices Expo, Microsoft Cloud, Agile Computing, @CloudExpo

Containers Expo Blog: Blog Feed Post

Hardware, Software, What About Valueware?

I am surprised nobody has figured out how to use the term valueware to describe their hardware, software or services solutions

I am surprised nobody has figured out how to use the term valueware to describe their hardware, software or services solutions, particular around cloud, big data, little data, converged solution stacks or bundles, virtualization and related themes.

Cloud virtualization storage and networking building blocks image
Cloud and virtualization building blocks transformed into Valueware

Note that I'm referring to IT hardware and not what you would usually find at a TrueValue hardware store (disclosure, I like to shop there for things to innovate with and address the non IT to do project list).

Image for truevalue hardware stores

Instead of value add software or what might otherwise be called an operating system (OS), or middleware, glue, hypervisor, shims or agents, I wonder who will be first to use valueware? Or who will be the first to say they were the first to articulate the value of their industry unique and revolutionary solution using valueware?

Cloud and convergence stack image from Cloud and Virtual Data Storage Networking Book

Click here to read more.

Cheers gs

Greg Schulz - Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO All Rights Reserved

Cheers Gs

Greg Schulz - Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO All Rights Reserved

Read the original blog entry...

More Stories By Greg Schulz

Greg Schulz is founder of the Server and StorageIO (StorageIO) Group, an IT industry analyst and consultancy firm. Greg has worked with various server operating systems along with storage and networking software tools, hardware and services. Greg has worked as a programmer, systems administrator, disaster recovery consultant, and storage and capacity planner for various IT organizations. He has worked for various vendors before joining an industry analyst firm and later forming StorageIO.

In addition to his analyst and consulting research duties, Schulz has published over a thousand articles, tips, reports and white papers and is a sought after popular speaker at events around the world. Greg is also author of the books Resilient Storage Network (Elsevier) and The Green and Virtual Data Center (CRC). His blog is at www.storageioblog.com and he can also be found on twitter @storageio.

CloudEXPO Stories
With more than 30 Kubernetes solutions in the marketplace, it's tempting to think Kubernetes and the vendor ecosystem has solved the problem of operationalizing containers at scale or of automatically managing the elasticity of the underlying infrastructure that these solutions need to be truly scalable. Far from it. There are at least six major pain points that companies experience when they try to deploy and run Kubernetes in their complex environments. In this presentation, the speaker will detail these pain points and explain how cloud can address them.
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-centric compute for the most data-intensive applications. Hyperconverged systems already in place can be revitalized with vendor-agnostic, PCIe-deployed, disaggregated approach to composable, maximizing the value of previous investments.
When building large, cloud-based applications that operate at a high scale, it's important to maintain a high availability and resilience to failures. In order to do that, you must be tolerant of failures, even in light of failures in other areas of your application. "Fly two mistakes high" is an old adage in the radio control airplane hobby. It means, fly high enough so that if you make a mistake, you can continue flying with room to still make mistakes. In his session at 18th Cloud Expo, Lee Atchison, Principal Cloud Architect and Advocate at New Relic, discussed how this same philosophy can be applied to highly scaled applications, and can dramatically increase your resilience to failure.
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by sharing information within the building and with outside city infrastructure via real time shared cloud capabilities.
As Cybric's Chief Technology Officer, Mike D. Kail is responsible for the strategic vision and technical direction of the platform. Prior to founding Cybric, Mike was Yahoo's CIO and SVP of Infrastructure, where he led the IT and Data Center functions for the company. He has more than 24 years of IT Operations experience with a focus on highly-scalable architectures.