Welcome!

Machine Learning Authors: William Schmarzo, Ed Featherston, Liz McMillan, Elizabeth White, Dan Blacharski

Blog Feed Post

MaaS applied to Healthcare – Use Case Practice

MaaS (Model as a Service) might allow building and controlling shared healthcare Cloud-ready data, affording agile data design, economies of scale and maintaining a trusted environment and scaling security. With MaaS, models map infrastructure and allow controlling persistent storage and deployment audit in order to certify th at data are coherent and remain linked to specific storage. As a consequence, models allow to check where data is deployed and stored. MaaS can play a crucial role in supplying services in healthcare: the model containing infrastructure properties includes information to classify the on-premise data Cloud service in terms of data security, coherence, outage, availability, geo-location and to secure an assisted service deployment and virtualization.

Introduction
Municipalities are opening new exchange information with healthcare institutes. The objective is sharing medical research, hospital acceptance by pathology, assistance and hospitalization with doctors, hospitals, clinics and, of course, patients. This open data [6] should improve patient care, prevention, prophylaxis and appropriate medical booking and scheduling by making information sharing more timely and efficient. From the data management point of view it means the service should assure data elasticity, multi-tenancy, scalability, security together with physical and logical architectures that represent the guidelines to design healthcare services.

Accordingly, healthcare services in the Cloud must primarily secure the following data properties [2]:
-      data location;
-      data persistence;
-      data discovery and navigation;
-      data inference;
-      confidentiality;
-      availability;
-      on-demand data secure deleting/shredding [4] [5] [11] [12].

These properties should be defined during the service design and data models play the “on-premise” integral role in defining, managing and protecting healthcare data in the Cloud. When creating healthcare data models, the service is created as well and properties for confidentiality, availability, authenticity, authorization, authentication and integrity [12] have to be defined inside: here is how MaaS provides preconfigured service properties.

Applying MaaS to Healthcare – Getting Practice
Applying MaaS to design and deploy healthcare services means explaining how apply the DaaS (Database as a Service, see [2] and [4]) lifecycle to realize faster and positive impacts on the go-live preparation with Cloud services. The Use Case introduces the practices how could be defined the healthcare service and then to translate them into the appropriate guidelines. Therefore, the DaaS lifecycle service practices we are applying are [4]:

Take into account, healthcare is a dynamic complex environment with many actors: patients, physicians, IT professionals, chemists, lab technicians, researchers, health operators…. The Use Case we are introducing tries to consider the whole system. It provides the main tasks along the DaaS lifecycle and so how the medical information might be managed and securely exchanged [12] among stakeholders for multiple entities such as hospital, clinics, pharmacy, labs and insurance companies.

The Use Case
Here is how MaaS might cover the Use Case and DaaS lifecycle best practices integrate the above properties and directions:

Objective To facilitate services to healthcare users and to improve exchange information experience among stakeholders. The Use Case aims to reduce costs of services by rapid data designing, updating, deployment and to provide data audit and control. To improve user experience with healthcare knowledge.
Description Current costs of data design, update and deployment are expensive and healthcare information (clinical, pharmaceutical, prevention, prophylaxis…) is not delivered fast enough based upon user experience;
Costs for hospitalization and treatments information should be predictable based upon user experience and interaction.
Actors Clinical and Research Centres;
Laboratories;
Healthcare Institute/Public Body  (Access Administrators);
Healthcare Institute/Public Body (Credentials, Roles Providers);
Patients;
IT Operations (Cloud Providers, Storage Providers, Clinical Application Providers).
Requirements Reducing costs and rapidly delivering relevant data to users, stakeholders and healthcare institutes;
Enabling decision making information to actors who regularly need access [11] [12] to healthcare services but lack the scale to exchange (and require) more dedicated services and support;
Fast supporting and updating healthcare data to users due to large reference base with many locations and disparate applications;
Ensuring compliance and governance directions are currently applied, revised and supervised;
Data security, confidentiality, availability, authenticity, authorization, authentication and integrity to be defined “on-premise”.
Pre-processing and post-processing Implementing and sharing data models;
Designing data model properties according to private, public and/or hybrid Cloud requirements;
Designing “on-premise” of the data storage model;
Modeling data to calculate “a priori” physical resources allocation;
Modeling data to predict usage “early” and to optimize database handling;
Outage is covered by versions and changes archived based on model partitioning;
Content discovery assists in identifying and auditing data to restore the service to previous versions and to irrecoverably destroying the data, if necessary, is asked by the regulations.
Included and extended use case Deployment is guided from model properties and architecture definition;
Mapping of data is defined and updated, checking whether the infrastructure provider has persistence and finding out whether outages are related to on-line tasks;
Deploying and sharing are guided from model properties and architecture definition.


Following, we apply MaaS’ properties (a subset) to the above healthcare Use Case. Per contra, Data Model properties (a subset) are applied along the DaaS lifecycle states:


MaaS Properties

DaaS Lifecycle States

Healthcare Data Model Properties
Data Location Create Data Model
Model Archive and Change
Deploy and Share
Data models contain partitioning properties and can include data location constraints. User tagging of data (a common Web 2.0 practice, through the use of clinic user-defined properties) should be managed. Support to compliant storage for preventative care data records should be provided
Data persistence Create Data Model
Model Archive & Change
Secure delete
For any partition, sub-model, or version of models, data model has to label and trace data location. Model defines a map specifying where data is stored (ambulatory care, clinical files have different storages). Providers persistence can be registered. Data discovery can update partition properties to identify where data is located
Data inference Create Data Model Data model has to support inference and special data aggregation: ambulatory might inference patient’s insurance file. All inferences and aggregations are defined, updated and tested into the model
Confidentiality Create Data Model
Populate, Use and Test
Data model guides rights assignment, access controls, rights management, and application data security starting from data model. As different tenants (hospitals, clinics, insurance companies and pharmacies) access the data, users and tenants should be defined inside the model. Logical and physical controls have to be set
High availability Deploy and Share
Model Archive and Change
Data model and partitioning configuration together with model changes and versions permits mastering of a recovery scheme and restoration when needed. Data inventory (classified by Surgery, Radiology, Cardiology, for example) vs discovery have to be traced and set.
Fast updates at low cost Create Data Model
Generate Schema/Update Data Model
Data reverse and forward engineering permits change management and version optimization in real-time directly on data deployed properties
Multi-database partitioning Create Data Model
Deploy and Share
Bi-directional partitioning in terms of deployment, storage, and evolution through model versioning has to be set. Multi-DBMS version management helps in sharing multi-partitioning deployments: for example, Insurance and Surgery by Patient, normally are partitioned and belong to different tenants vs different databases
Near-zero configuration and administration Create Data Model
Generate Schema/Update Data Model
Data models cover and contain all data properties including scripts, stored procedures, queries, partitions, changes and all configuration and administration properties. This means administrative actions decrease to leave more time for data design and update (and deployment). Regulation compliance can be a frequent administration task: models ensure that healthcare compliance and governance is currently aligned



The Outcome
MaaS defines service properties through which the DaaS process can be implemented and maintained. As a consequence, applying the Use Case through the introduced directions, the following results should be outlined.

Qualitative Outcomes:
1)    Healthcare actors share information on the basis of defined “on-premise” data models: models can be implemented and deployed using a model-driven paradigm;
2)    Data Models are standardized in terms of naming convention and conceptual templates (Pharma, Insurance, Municipality… and so on): in fact, models can be modified and updated with respect the knowledge they were initially designed;
3)    Storage and partitioning in the Cloud can be defined “a priori” and periodic audits can be set to certify that data are coherent and remain linked to specific sites;
4)    The users consult the information and perform 2 tasks:
4.1) try the (best) search and navigate the knowledge for personal and work activities;
4.2) give back information about user experience and practice/procedures that should be updated, rearranged, downsized or extended depending upon community needs, types of interaction, events or public specific situations.
5)    Models are “on-premise” policy-driven tools. Regulation compliance rules can be included in the data model. Changes on current compliance constraints means changes on the data model before it is deployed with the new version.

Quantitative Outcomes:
1)    Measurable and traceable costs reduction (to be calculated as a function of annual Cloud Fee, Resources tuning and TCO);
2)    Time reduction in terms of knowledge fast design, update, deployment, portability, reuse (to be calculated as a function of SLA, data and application management effort and ROI);
3)    Risk reduction accordingly to “on-premise” Cloud service design and control (to be calculated as a function of recovery time, chargeback on cost of applied countermeasures compared with periodical audit based upon model information).

Conclusion
MaaS might provide the real opportunity to offer a unique utility-style model life cycle to accelerate cloud data optimization and performance in the healthcare network. MaaS applied to healthcare services might be the right way to transform the medical service delivery in the Cloud. MaaS defines “on-premise” data security, coherence, outage, availability, geo-location and an assisted service deployment. Models are adaptable to various departmental needs and organizational sizes, simplify and align healthcare domain-specific knowledge combining the data model approach and the on-demand nature of cloud computing. MaaS agility is the key requirements of data services design, incremental data deployment and progressive data structure provisioning. Finally, the model approach allows the validation of service evolution. The models’ versions and configurations are a catalogue to manage both data regulation compliance [12] and data contract’s clauses in the Cloud among IT, Providers and Healthcare actors [9].

References
[1] N. Piscopo - ERwin® in the Cloud: How Data Modeling Supports Database as a Service (DaaS) Implementations
[2] N. Piscopo - CA ERwin® Data Modeler’s Role in the Relational Cloud
[3] D. Burbank, S. Hoberman - Data Modeling Made Simple with CA ERwin® Data Modeler r8
[4] N. Piscopo – Best Practices for Moving to the Cloud using Data Models in the DaaS Life Cycle
[5] N. Piscopo – Using CA ERwin® Data Modeler and Microsoft SQL Azure to Move Data to the Cloud within the DaaS Life Cycle
[6] N. Piscopo – MaaS (Model as a Service) is the emerging solution to design, map, integrate and publish Open Data http://cloudbestpractices.net/2012/10/21/maas/
[7] N. Piscopo - MaaS Workshop, Awareness, Courses Syllabus
[8] N. Piscopo - DaaS Workshop, Awareness, Courses Syllabus
[9] N. Piscopo – Applying MaaS to DaaS (Database as a Service ) Contracts. An intorduction to the Practice http://cloudbestpractices.net/2012/11/04/applying-maas-to-daas/
[10] N. M. Josuttis – SOA in Practice
[11] H. A. J. Narayanan, M. H. GüneşEnsuring Access Control in Cloud Provisioned Healthcare Systems
[12] Kantara Initiatives -http://kantarainitiative.org/confluence/display/uma/UMA+Scenarios+and+Use+Cases

Disclamer
This document is provided AS-IS for your informational purposes only. In no event the contains of “How MaaS might be applied to Healthcare – A Use Case” will be liable to any party for direct, indirect, special, incidental, economical (including lost business profits, business interruption, loss or damage of data, and the like) or consequential damages, without limitations, arising out of the use or inability to use this documentation or the products, regardless of the form of action, whether in contract, tort (including negligence), breach of warranty, or otherwise, even if an advise of the possibility of such damages there exists. Specifically, it is disclaimed any warranties, including, but not limited to, the express or implied warranties of merchantability, fitness for a particular purpose and non-infringement, regarding this document or the products’ use or performance. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies/offices.


Read the original blog entry...

More Stories By Cloud Best Practices Network

The Cloud Best Practices Network is an expert community of leading Cloud pioneers. Follow our best practice blogs at http://CloudBestPractices.net

@CloudExpo Stories
Sometimes I write a blog just to formulate and organize a point of view, and I think it’s time that I pull together the bounty of excellent information about Machine Learning. This is a topic with which business leaders must become comfortable, especially tomorrow’s business leaders (tip for my next semester University of San Francisco business students!). Machine learning is a key capability that will help organizations drive optimization and monetization opportunities, and there have been some...
"Storpool does only block-level storage so we do one thing extremely well. The growth in data is what drives the move to software-defined technologies in general and software-defined storage," explained Boyan Ivanov, CEO and co-founder at StorPool, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
As DevOps methodologies expand their reach across the enterprise, organizations face the daunting challenge of adapting related cloud strategies to ensure optimal alignment, from managing complexity to ensuring proper governance. How can culture, automation, legacy apps and even budget be reexamined to enable this ongoing shift within the modern software factory? In her Day 2 Keynote at @DevOpsSummit at 21st Cloud Expo, Aruna Ravichandran, VP, DevOps Solutions Marketing, CA Technologies, was jo...
As Marc Andreessen says software is eating the world. Everything is rapidly moving toward being software-defined – from our phones and cars through our washing machines to the datacenter. However, there are larger challenges when implementing software defined on a larger scale - when building software defined infrastructure. In his session at 16th Cloud Expo, Boyan Ivanov, CEO of StorPool, provided some practical insights on what, how and why when implementing "software-defined" in the datacent...
Blockchain. A day doesn’t seem to go by without seeing articles and discussions about the technology. According to PwC executive Seamus Cushley, approximately $1.4B has been invested in blockchain just last year. In Gartner’s recent hype cycle for emerging technologies, blockchain is approaching the peak. It is considered by Gartner as one of the ‘Key platform-enabling technologies to track.’ While there is a lot of ‘hype vs reality’ discussions going on, there is no arguing that blockchain is b...
Blockchain is a shared, secure record of exchange that establishes trust, accountability and transparency across business networks. Supported by the Linux Foundation's open source, open-standards based Hyperledger Project, Blockchain has the potential to improve regulatory compliance, reduce cost as well as advance trade. Are you curious about how Blockchain is built for business? In her session at 21st Cloud Expo, René Bostic, Technical VP of the IBM Cloud Unit in North America, discussed the b...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Is advanced scheduling in Kubernetes achievable?Yes, however, how do you properly accommodate every real-life scenario that a Kubernetes user might encounter? How do you leverage advanced scheduling techniques to shape and describe each scenario in easy-to-use rules and configurations? In his session at @DevOpsSummit at 21st Cloud Expo, Oleg Chunikhin, CTO at Kublr, answered these questions and demonstrated techniques for implementing advanced scheduling. For example, using spot instances and co...
The cloud era has reached the stage where it is no longer a question of whether a company should migrate, but when. Enterprises have embraced the outsourcing of where their various applications are stored and who manages them, saving significant investment along the way. Plus, the cloud has become a defining competitive edge. Companies that fail to successfully adapt risk failure. The media, of course, continues to extol the virtues of the cloud, including how easy it is to get there. Migrating...
The use of containers by developers -- and now increasingly IT operators -- has grown from infatuation to deep and abiding love. But as with any long-term affair, the honeymoon soon leads to needing to live well together ... and maybe even getting some relationship help along the way. And so it goes with container orchestration and automation solutions, which are rapidly emerging as the means to maintain the bliss between rapid container adoption and broad container use among multiple cloud host...
Imagine if you will, a retail floor so densely packed with sensors that they can pick up the movements of insects scurrying across a store aisle. Or a component of a piece of factory equipment so well-instrumented that its digital twin provides resolution down to the micrometer.
The need for greater agility and scalability necessitated the digital transformation in the form of following equation: monolithic to microservices to serverless architecture (FaaS). To keep up with the cut-throat competition, the organisations need to update their technology stack to make software development their differentiating factor. Thus microservices architecture emerged as a potential method to provide development teams with greater flexibility and other advantages, such as the abili...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settle...
Product connectivity goes hand and hand these days with increased use of personal data. New IoT devices are becoming more personalized than ever before. In his session at 22nd Cloud Expo | DXWorld Expo, Nicolas Fierro, CEO of MIMIR Blockchain Solutions, will discuss how in order to protect your data and privacy, IoT applications need to embrace Blockchain technology for a new level of product security never before seen - or needed.
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
In his general session at 21st Cloud Expo, Greg Dumas, Calligo’s Vice President and G.M. of US operations, discussed the new Global Data Protection Regulation and how Calligo can help business stay compliant in digitally globalized world. Greg Dumas is Calligo's Vice President and G.M. of US operations. Calligo is an established service provider that provides an innovative platform for trusted cloud solutions. Calligo’s customers are typically most concerned about GDPR compliance, application p...
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, discussed how from store operations and ...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...