Welcome!

AJAX & REA Authors: Andreas Grabner, Tim Hinds, Alfredo Diaz, Kevin Benedict, RealWire News Distribution

Related Topics: Java, XML, SOA & WOA, AJAX & REA, Apache, Security

Java: Article

Designing a Java Cryptography Header

Encrypt personal files, exchange confidential messages and authenticate the sender

Designing and implementing a hybrid encryption application is a big challenge but without a supporting infrastructure it's almost impossible. There are open source libraries that allow you to encrypt a file but only provide the translation technique. After the information has been encrypted, how do you know what algorithm was used, who you encrypted it, what version did you used, etc. In order to decrypt the protected message or file, a well-defined cryptographic header provides all the information required. This also applies if the encrypted data is digitally signed and the recipient wants to validate the signature.

This article will address one of the critical components of a support infrastructure by providing a design of a cryptographic header used to precede encrypted and/or digitally signed messages and files. The header is used within an application known as DocuArmor that was written using Java and the Cryptography library from the BouncyCastle organization and designed by Logical Answers Inc. The header will store information used when encrypting and/or digitally signing a message or file and allow the recipient to decrypt the information and/or verify the digital signature. With a properly designed header, a person can encrypt their personal files as well as exchange confidential messages and authenticate the sender.

Hybrid Encryption
In order to encrypt personal files and exchange protected data, we use a hybrid technique with two types of encryption, symmetric and asymmetric.

Symmetric encryption uses a single key to hide the message and reveal the message. There are several symmetric algorithms available such as AES (the Advanced Encryption Standard) but the important thing to remember is that the file can be encrypted and decrypted using the same key. An example is the Caesar cipher that shifts the letters of the alphabet by a specific number. If the shift is 2 (single key) then we get the following translation; a=c, b=d, c=e, ..., z=b.

Asymmetric encryption uses a pair of keys (public, private) to hide and reveal the message and the RSA algorithm is most commonly used. The RSA algorithm was credited in 1977 to Ronald Rivest, Adi Shamir, and Leonard Adleman. Sometimes referred to as Public Key Infrastructure (PKI), the pubic key is used to encrypt data and the private key is used to decrypt data.

Figure 1: Public and Private Key Functions

The hybrid technique uses the symmetric key to encrypt a file. The asymmetric public key is used to encrypt the symmetric key and is placed in the header. When the recipient receives an encrypted file, the encrypted symmetric key is extracted from the header. The encrypted symmetric key is decrypted using the private key. The file is decrypted using the symmetric key.

The same pair of keys can be used with digital signatures. The private key is used to generate a digital signature from a file and inserted into the header. The public key is used to verify the authenticity of the signature.

When two people want to exchange encrypted files, they each generate a pair of asymmetric keys and exchange a copy of their public keys. By using the other person's public key, they can encrypt a file, storing the cryptographic information in the header and then e-mail it to the recipient. The recipient will use the header to extract a symmetric key with their private key and decrypt the accompanying file. If a digital signature is included, the recipient can authenticate the sender.

Figure 2: Exchange of Encrypted Files

Cryptographic Header
When a file is encrypted, digitally signed or both, a Cryptographic header is placed in front of the resulting file and has the following structure. The structure consists of two sections, the header and the encrypted/plain file contents.

Figure 3: Encrypted File Structure

The header structure contains information required to reverse the encryption process and decrypt the contents of the file or verify the digital signature. The header contains the total length, an ID, version, and two sections containing encryption and digital signature information. Using Java, you can write out the contents of header within a byte stream as well as read it back in.

Figure 4: Cryptographic Header Structure

  • Total Len: Contains the total length of the header (stored as a 4 byte integer)
  • Header ID: Contains the string "LAHEADER" to identify the file (16 bytes)
  • Header Version: Structural version of the header (stored as a 4 byte integer)
  • Encryption Information: Holds the algorithm, mode, encrypted symmetric key, etc.
  • Digital Signature Information: Holds digital signature

Encryption Information
The Encryption Information structure contains information that was used to encrypt the contents of the file and later decrypt the file. The symmetric key and initialization vector is encrypted with the recipient's asymmetric public key. The recipient could be the owner if you are encrypting a file for yourself or another user you want to send confidential information to.

An additional field has been allocated to allow the encryption of the symmetric key with another set of asymmetric keys. For example, if owner A is sending an encrypted file to another person B, the symmetric key can be encrypted with B's public key as well as A's public key so that either person can decrypt the file.

Alternatively, an employee can encrypt a file with their public key and a corporation could insert an encrypted symmetric key into the header using their asymmetric keys. The corporation's asymmetric keys can be a Certifying Authority (CA), which can be used to issue employee keys.

Figure 5: Encryption Information Structure

  • Encrypt Flag: (Y/N - 2 bytes) specifies whether the file is encrypted.
  • Decrypt ID Length: (integer - 4 bytes) length in chars(bytes) of the Key ID.
  • Decrypt ID: (size varies) an identifier of the RSA keys used in the encryption/decryption process. It is the alias associated to the asymmetric encryption keys (e.g., JaneDoe_12ff).
  • Other Decrypt ID Length: (integer - 4 bytes) length in chars(bytes) of the Key ID.
  • Other Decrypt ID: (size varies) an identifier of the RSA keys used in the encryption/decryption process. It can be the alias or the common name (e.g., JaneDoe_12ff or Logical Answers CA).
  • Symmetric Key Algorithm: (integer - 4 bytes) specifies the symmetric key algorithm used to encrypt the file. The default value is 1=AES.
  • Symmetric Key Mode: (integer - 4 bytes) specifies the symmetric key block cipher mode used to enhance confidentiality. The default value is 5=Segmented Integer Counter mode (CTR).
  • Symmetric Key Padding: (integer - 4 bytes) specifies the type of padding for block cipher. The default value is 1=No Padding
  • Wrapped Symmetric Key Length: (integer - 4 bytes)
  • Wrapped Symmetric Key: (size varies) symmetric key used to encrypt/decrypt the file and encrypted with the asymmetric key.
  • Initialization Vector Length: (integer - 4 bytes)
  • Initialization Vector: (byte[] - size varies) vector used with the symmetric encryption process.
  • Other Wrapped Symmetric Key Length: (integer - 4 bytes)
  • Other Wrapped Symmetric Key: (size varies) symmetric key used to encrypt/decrypt the file and encrypted with another person's asymmetric key.
  • Other Initialization Vector Length: (integer - 4 bytes)
  • Other Initialization Vector: (byte[] - size varies) vector used with the symmetric encryption process.

Digital Signature Information
The Digital Signature Information structure contains information used to add or verify a digital signature generated from the contents of the file. The digital signature is generated with the owner's private key using a specific algorithm and then inserted into the header. When the recipient receives the signed file, they can use the signer's public key to validate its authenticity. If the signature is authenticated, it implies the file has not been altered and the holder of the private key generated the signature.

Figure 6: Digital Signature Information Structure

  • Signed Flag: (Y/N - 2 bytes) specifies whether the file contains a digital signature
  • Signature Algorithm: (integer - 4 bytes) specifies the algorithm used to generate the digital signature. The default value is 12= SHA512WithRSAEncryption
  • Verify Signature Cert Name Length: (integer - 4 bytes) length in chars(bytes) of the filename of the certificate used to verify a digital signature
  • Verify Signature Cert Name: (size varies) filename of the certificate holding the RSA public key used to verify the digital signature of a file (e.g., JaneDoe_fa39.cer).
  • Signature Date/Time: (long - 8 bytes) date the digital signature was generated.
  • Signature Length: (integer - 4 bytes)
  • Signature: (size varies) holds digital signature generated with RSA private key and signature engine

File Naming Conventions
The Cryptographic header holds information that designates which keys were used to encrypt a file but it's not physically accessible without reading it in first. With proper naming conventions, you can determine who the intended recipient is for encrypted files - whether it is for yourself or a colleague. When you generate your pair of asymmetric encryption keys using Java, store them in a file called a key store. The key store holds a pair of asymmetric keys as an entry with a unique alias. The alias typically consists of the initial of your first name and your last name. To make it more unique, you can extract 4 hex digits from your public key and append an underline and the hex digits to the alias. For example, if the person's name was Jane Smith, then the resulting unique alias would be jsmith_ad5e. A certificate holds a person's public key and the alias would be used in the filename, as jsmith_ad5e.cer. Similarly, the key store holding the pair of asymmetric keys would be saved as, jsmith_ad5e.jks.

Following the unique alias analogy, Jane Smith could encrypt files for herself and the file name would be appended with her alias and an appropriate file extension. For example, if Jane encrypted a personal file, myTaxes.txt, then the result would be myTaxes.txt.jsmith_ad5e.aes. If Jane wanted to send her colleague Dick an encrypted document, she would use Dick's certificate to encrypt it. If Dick's certificate is djones_9fa2, Jane could encrypt the file, comments.doc, for Dick and the resulting file would be comments.doc.djones_9fa2.aes. When Dick receives the file, he knows it is for him by recognizing his alias on the file name.

The unique alias is stored within the header. This reinforces the importance of having a well-defined Cryptographic header for implementing encryption within your applications.

Benefits
A well-defined cryptographic header stores the information required to encrypt, decrypt and digitally sign a file. Along with facilitating the implementation of standard cryptographic functions, the header also provides the following benefits:

  • The header allows for the protection of personal files as well as the exchange of confidential data.
  • Using the stored digital signature, the recipient can determine if the sender is valid and whether file has been altered.
  • The header allows either the sender or recipient to decrypt the encrypted file since both would encrypt the symmetric key with their public key.
  • Using the concept of a Certifying Authority pair of asymmetric keys, a corporation, group, or family could issue pairs of asymmetric keys to their employees or members and decipher files encrypted by them in case of emergencies.
  • The header allows for using different combinations of symmetric algorithms, modes, padding and key sizes to be used to encrypt information.
  • The header version allows for enhancements to be added to the structure for implementing new functions and still support older versions.

References and Other Technical Notes
Software requirements:

Recommended Reading:

  • "Beginning Cryptography with Java" by David Hook.
  • "The Code Book" by Simon Singh

More Stories By James H. Wong

James H. Wong has been involved in the technology field for over 30 years and has dual MS degrees in mathematics and computer science from the University of Michigan. He worked for IBM for almost 10 years designing and implementing software. Founding Logical Answers Corp in 1992, he has provided technical consulting/programming services to clients, providing their business with a competitive edge. With his partner they offer a Java developed suite of “Secure Applications” that protect client’s data using the standard RSA (asymmetric) and AES (symmetric) encryption algorithms.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Cloud Expo Breaking News
More and more enterprises today are doing business by opening up their data and applications through APIs. Though forward-thinking and strategic, exposing APIs also increases the surface area for potential attack by hackers. To benefit from APIs while staying secure, enterprises and security architects need to continue to develop a deep understanding about API security and how it differs from traditional web application security or mobile application security. In his session at 14th Cloud Expo, Sachin Agarwal, VP of Product Marketing and Strategy at SOA Software, will walk you through the various aspects of how an API could be potentially exploited. He will discuss the necessary best practices to secure your data and enterprise applications while continue continuing to support your business’s digital initiatives.
Web conferencing in a public cloud has the same risks as any other cloud service. If you have ever had concerns over the types of data being shared in your employees’ web conferences, such as IP, financials or customer data, then it’s time to look at web conferencing in a private cloud. In her session at 14th Cloud Expo, Courtney Behrens, Senior Marketing Manager at Brother International, will discuss how issues that had previously been out of your control, like performance, advanced administration and compliance, can now be put back behind your firewall.
Next-Gen Cloud. Whatever you call it, there’s a higher calling for cloud computing that requires providers to change their spots and move from a commodity mindset to a premium one. Businesses can no longer maintain the status quo that today’s service providers offer. Yes, the continuity, speed, mobility, data access and connectivity are staples of the cloud and always will be. But cloud providers that plan to not only exist tomorrow – but to lead – know that security must be the top priority for the cloud and are delivering it now. In his session at 14th Cloud Expo, Kurt Hagerman, Chief Information Security Officer at FireHost, will detail why and how you can have both infrastructure performance and enterprise-grade security – and what tomorrow's cloud provider will look like.
The social media expansion has shown just how people are eager to share their experiences with the rest of the world. Cloud technology is the perfect platform to satisfy this need given its great flexibility and readiness. At Cynny, we aim to revolutionize how people share and organize their digital life through a brand new cloud service, starting from infrastructure to the users’ interface. A revolution that began from inventing and designing our very own infrastructure: we have created the first server network powered solely by ARM CPU. The microservers have “organism-like” features, differentiating them from any of the current technologies. Benefits include low consumption of energy, making Cynny the ecologically friendly alternative for storage as well as cheaper infrastructure, lower running costs, etc.
The revolution that happened in the server universe over the past 15 years has resulted in an eco-system that is more open, more democratically innovative and produced better results in technically challenging dimensions like scale. The underpinnings of the revolution were common hardware, standards based APIs (ex. POSIX) and a strict adherence to layering and isolation between applications, daemons and kernel drivers/modules which allowed multiple types of development happen in parallel without hindering others. Put simply, today's server model is built on a consistent x86 platform with few surprises in its core components. A kernel abstracts away the platform, so that applications and daemons are decoupled from the hardware. In contrast, networking equipment is still stuck in the mainframe era. Today, networking equipment is a single appliance, including hardware, OS, applications and user interface come as a monolithic entity from a single vendor. Switching between different vendor'...
Cloud backup and recovery services are critical to safeguarding an organization’s data and ensuring business continuity when technical failures and outages occur. With so many choices, how do you find the right provider for your specific needs? In his session at 14th Cloud Expo, Daniel Jacobson, Technology Manager at BUMI, will outline the key factors including backup configurations, proactive monitoring, data restoration, disaster recovery drills, security, compliance and data center resources. Aside from the technical considerations, the secret sauce in identifying the best vendor is the level of focus, expertise and specialization of their engineering team and support group, and how they monitor your day-to-day backups, provide recommendations, and guide you through restores when necessary.
Cloud scalability and performance should be at the heart of every successful Internet venture. The infrastructure needs to be resilient, flexible, and fast – it’s best not to get caught thinking about architecture until the middle of an emergency, when it's too late. In his interactive, no-holds-barred session at 14th Cloud Expo, Phil Jackson, Development Community Advocate for SoftLayer, will dive into how to design and build-out the right cloud infrastructure.
You use an agile process; your goal is to make your organization more agile. What about your data infrastructure? The truth is, today’s databases are anything but agile – they are effectively static repositories that are cumbersome to work with, difficult to change, and cannot keep pace with application demands. Performance suffers as a result, and it takes far longer than it should to deliver on new features and capabilities needed to make your organization competitive. As your application and business needs change, data repositories and structures get outmoded rapidly, resulting in increased work for application developers and slow performance for end users. Further, as data sizes grow into the Big Data realm, this problem is exacerbated and becomes even more difficult to address. A seemingly simple schema change can take hours (or more) to perform, and as requirements evolve the disconnect between existing data structures and actual needs diverge.
SYS-CON Events announced today that SherWeb, a long-time leading provider of cloud services and Microsoft's 2013 World Hosting Partner of the Year, will exhibit at SYS-CON's 14th International Cloud Expo®, which will take place on June 10–12, 2014, at the Javits Center in New York City, New York. A worldwide hosted services leader ranking in the prestigious North American Deloitte Technology Fast 500TM, and Microsoft's 2013 World Hosting Partner of the Year, SherWeb provides competitive cloud solutions to businesses and partners around the world. Founded in 1998, SherWeb is a privately owned company headquartered in Quebec, Canada. Its service portfolio includes Microsoft Exchange, SharePoint, Lync, Dynamics CRM and more.
The world of cloud and application development is not just for the hardened developer these days. In their session at 14th Cloud Expo, Phil Jackson, Development Community Advocate for SoftLayer, and Harold Hannon, Sr. Software Architect at SoftLayer, will pull back the curtain of the architecture of a fun demo application purpose-built for the cloud. They will focus on demonstrating how they leveraged compute, storage, messaging, and other cloud elements hosted at SoftLayer to lower the effort and difficulty of putting together a useful application. This will be an active demonstration and review of simple command-line tools and resources, so don’t be afraid if you are not a seasoned developer.
SYS-CON Events announced today that BUMI, a premium managed service provider specializing in data backup and recovery, will exhibit at SYS-CON's 14th International Cloud Expo®, which will take place on June 10–12, 2014, at the Javits Center in New York City, New York. Manhattan-based BUMI (Backup My Info!) is a premium managed service provider specializing in data backup and recovery. Founded in 2002, the company’s Here, There and Everywhere data backup and recovery solutions are utilized by more than 500 businesses. BUMI clients include professional service organizations such as banking, financial, insurance, accounting, hedge funds and law firms. The company is known for its relentless passion for customer service and support, and has won numerous awards, including Customer Service Provider of the Year and 10 Best Companies to Work For.
Chief Security Officers (CSO), CIOs and IT Directors are all concerned with providing a secure environment from which their business can innovate and customers can safely consume without the fear of Distributed Denial of Service attacks. To be successful in today's hyper-connected world, the enterprise needs to leverage the capabilities of the web and be ready to innovate without fear of DDoS attacks, concerns about application security and other threats. Organizations face great risk from increasingly frequent and sophisticated attempts to render web properties unavailable, and steal intellectual property or personally identifiable information. Layered security best practices extend security beyond the data center, delivering DDoS protection and maintaining site performance in the face of fast-changing threats.
From data center to cloud to the network. In his session at 3rd SDDC Expo, Raul Martynek, CEO of Net Access, will identify the challenges facing both data center providers and enterprise IT as they relate to cross-platform automation. He will then provide insight into designing, building, securing and managing the technology as an integrated service offering. Topics covered include: High-density data center design Network (and SDN) integration and automation Cloud (and hosting) infrastructure considerations Monitoring and security Management approaches Self-service and automation
In his session at 14th Cloud Expo, David Holmes, Vice President at OutSystems, will demonstrate the immense power that lives at the intersection of mobile apps and cloud application platforms. Attendees will participate in a live demonstration – an enterprise mobile app will be built and changed before their eyes – on their own devices. David Holmes brings over 20 years of high-tech marketing leadership to OutSystems. Prior to joining OutSystems, he was VP of Global Marketing for Damballa, a leading provider of network security solutions. Previously, he was SVP of Global Marketing for Jacada where his branding and positioning expertise helped drive the company from start-up days to a $55 million initial public offering on Nasdaq.
Performance is the intersection of power, agility, control, and choice. If you value performance, and more specifically consistent performance, you need to look beyond simple virtualized compute. Many factors need to be considered to create a truly performant environment. In his General Session at 14th Cloud Expo, Marc Jones, Vice President of Product Innovation for SoftLayer, will explain how to take advantage of a multitude of compute options and platform features to make cloud the cornerstone of your online presence.