Welcome!

IoT User Interface Authors: Liz McMillan, Elizabeth White, William Schmarzo, Sematext Blog, Pat Romanski

Related Topics: Apache, Java IoT, Open Source Cloud, IoT User Interface, @CloudExpo

Apache: Blog Feed Post

GridGain and Hadoop: Differences and Synergies

Now data can be analyzed and processed at any point of its lifecycle

GridGain is Java-based middleware for in-memory processing of big data in a distributed environment. It is based on high performance in-memory data platform that integrates fast In-Memory MapReduce implementation with In-Memory Data Grid technology delivering easy to use and easy to scale software. Using GridGain you can process terabytes of data, on 1000s of nodes in under a second.

GridGain typically resides between business, analytics, transactional or BI applications and long term data storage such as RDBMS, ERP or Hadoop HDFS, and provides in-memory data platform for high performance, low latency data storage and processing.

Both, GridGain and Hadoop, are designed for parallel processing of distributed data. However, both products serve very different goals and in most cases are very complementary to each other. Hadoop is mostly geared towards batch-oriented offline processing of historical and analytics payloads where latencies and transactions don’t really matter, while GridGain is meant for real-time in-memory processing of both transactional and non-transactional live data with very low latencies. To better understand where each product really fits, let us compare some main concepts of each product.

GridGain In-Memory Compute Grid vs Hadoop MapReduce
MapReduce
is a programming model developed by Google for processing large data sets of data stored on disks. Hadoop MapReduce is an implementation of such model. The model is based on the fact that data in a single file can be distributed across multiple nodes and hence the processing of those files has to be co-located on the same nodes to avoid moving data around. The processing is based on scanning files record by record in parallel on multiple nodes and then reducing the results in parallel on multiple nodes as well. Because of that, standard disk-based MapReduce is good for problem sets which require analyzing every single record in a file and does not fit for cases when direct access to a certain data record is required. Furthermore, due to offline batch orientation of Hadoop it is not suited for low-latency applications.

GridGain In-Memory Compute Grid (IMCG) on the other hand is geared towards in-memory computations and very low latencies. GridGain IMCG has its own implementation of MapReduce which is designed specifically for real-time in-memory processing use cases and is very different from Hadoop one. Its main goal is to split a task into multiple sub-tasks, load balance those sub-tasks among available cluster nodes, execute them in parallel, then aggregate the results from those sub-tasks and return them to user.



Splitting tasks into multiple sub-tasks and assigning them to nodes is the *mapping* step and aggregating of results is *reducing* step. However, there is no concept of mandatory data built in into this design and it can work in the absence of any data at all which makes it a good fit for both, stateless and state-full computations, like traditional HPC. In cases when data is present, GridGain IMCG will also automatically colocate computations with the nodes where the data is to avoid redundant data movement.

It is also worth mentioning, that unlike Hadoop, GridGain IMCG is very well suited for processing of computations which are very short-lived in nature, e.g. below 100 milliseconds and may not require any mapping or reducing.

Here is a simple Java coding example of GridGain IMCG which counts number of letters in a phrase by splitting it into multiple words, assigning each word to a sub-task for parallel remote execution in the map step, and then adding all lengths receives from remote jobs in reduce step.

    int letterCount = g.reduce(
        BALANCE,
        // Mapper
        new GridClosure<String, Integer>() {
            @Override public Integer apply(String s) {
                return s.length();
            }
        },
        Arrays.asList("GridGain Letter Count".split(" ")),
        // Reducer
        F.sumIntReducer()
    ));

GridGain In-Memory Data Grid vs Hadoop Distributed File System
Hadoop Distributed File System (HDFS) is designed for storing large amounts of data in files on disk. Just like any file system, the data is mostly stored in textual or binary formats. To find a single record inside an HDFS file requires a file scan. Also, being distributed in nature, to update a single record within a file in HDFS requires copying of a whole file (file in HDFS can only be appended). This makes HDFS well-suited for cases when data is appended at the end of a file, but not well suited for cases when data needs to be located and/or updated in the middle of a file. With indexing technologies, like HBase or Impala, data access becomes somewhat easier because keys can be indexed, but not being able to index into values (secondary indexes) only allow for primitive query execution.

GridGain In-Memory Data Grid (IMDG) on the other hand is an in-memory key-value data store. The roots of IMDGs came from distributed caching, however GridGain IMDG also adds transactions, data partitioning, and SQL querying to cached data. The main difference with HDFS (or Hadoop ecosystem overall) is the ability to transact and update any data directly in real time. This makes GridGain IMDG well suited for working on operational data sets, the data sets that are currently being updated and queried, while HDFS is suited for working on historical data which is constant and will never change.

Unlike a file system, GridGain IMDG works with user domain model by directly caching user application objects. Objects are accessed and updated by key which allows IMDG to work with volatile data which requires direct key-based access.



GridGain IMDG allows for indexing into keys and values (i.e. primary and secondary indices) and supports native SQL for data querying & processing. One of unique features of GridGain IMDG is support for distributed joins which allow to execute complex SQL queries on the data in-memory without limitations.

GridGain and Hadoop Working Together
To summarize:

Hadoop essentially is a Big Data warehouse which is good for batch processing of historic data that never changes, while GridGain, on the other hand, is an In-Memory Data Platform which works with your current operational data set in transactional fashion with very low latencies. Focusing on very different use cases make GridGain and Hadoop very complementary with each other.



Up-Stream Integration
The diagram above shows integration between GridGain and Hadoop. Here we have GridGain In-Memory Compute Grid and Data Grid working directly in real-time with user application by partitioning and caching data within data grid, and executing in-memory computations and SQL queries on it. Every so often, when data becomes historic, it is snapshotted into HDFS where it can be analyzed using Hadoop MapReduce and analytical tools from Hadoop eco-system.

Down-Stream Integration
Another possible way to integrate would be for cases when data is already stored in HDFS but needs to be loaded into IMDG for faster in-memory processing. For cases like that GridGain provides fast loading mechanisms from HDFS into GridGain IMDG where it can be further analyzed using GridGain in-memory Map Reduce and indexed SQL queries.

Conclusion
Integration between an in-memory data platform like GridGain and disk based data platform like Hadoop allows businesses to get valuable insights into the whole data set at once, including volatile operational data set cached in memory, as well as historic data set stored in Hadoop. This essentially eliminates any gaps in processing time caused by Extract-Transfer-Load (ETL) process of copying data from operational system of records, like standard databases, into historic data warehouses like Hadoop. Now data can be analyzed and processed at any point of its lifecycle, from the moment when it gets into the system up until it gets put away into a warehouse.

Read the original blog entry...

More Stories By Thomas Krafft

Over 15 years of experience in marketing and demand creation, with strategies driving over $500 million in revenue for a variety of companies in several high-growth and competitive markets, including consumer software and web services, ecommerce, demand creation through web and search, big data, and now healthcare.

@CloudExpo Stories
If you’re responsible for an application that depends on the data or functionality of various IoT endpoints – either sensors or devices – your brand reputation depends on the security, reliability, and compliance of its many integrated parts. If your application fails to deliver the expected business results, your customers and partners won't care if that failure stems from the code you developed or from a component that you integrated. What can you do to ensure that the endpoints work as expect...
Fact is, enterprises have significant legacy voice infrastructure that’s costly to replace with pure IP solutions. How can we bring this analog infrastructure into our shiny new cloud applications? There are proven methods to bind both legacy voice applications and traditional PSTN audio into cloud-based applications and services at a carrier scale. Some of the most successful implementations leverage WebRTC, WebSockets, SIP and other open source technologies. In his session at @ThingsExpo, Da...
Without a clear strategy for cost control and an architecture designed with cloud services in mind, costs and operational performance can quickly get out of control. To avoid multiple architectural redesigns requires extensive thought and planning. Boundary (now part of BMC) launched a new public-facing multi-tenant high resolution monitoring service on Amazon AWS two years ago, facing challenges and learning best practices in the early days of the new service. In his session at 19th Cloud Exp...
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 19th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world and ThingsExpo Silicon Valley Call for Papers is now open.
SYS-CON Events announced today that Niagara Networks will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Niagara Networks offers the highest port-density systems, and the most complete Next-Generation Network Visibility systems including Network Packet Brokers, Bypass Switches, and Network TAPs.
While DevOps promises a better and tighter integration among an organization’s development and operation teams and transforms an application life cycle into a continual deployment, Chef and Azure together provides a speedy, cost-effective and highly scalable vehicle for realizing the business values of this transformation. In his session at @DevOpsSummit at 19th Cloud Expo, Yung Chou, a Technology Evangelist at Microsoft, will present a unique opportunity to witness how Chef and Azure work tog...
Cognitive Computing is becoming the foundation for a new generation of solutions that have the potential to transform business. Unlike traditional approaches to building solutions, a cognitive computing approach allows the data to help determine the way applications are designed. This contrasts with conventional software development that begins with defining logic based on the current way a business operates. In her session at 18th Cloud Expo, Judith S. Hurwitz, President and CEO of Hurwitz & ...
SYS-CON Events announced today that ReadyTalk, a leading provider of online conferencing and webinar services, has been named Vendor Presentation Sponsor at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. ReadyTalk delivers audio and web conferencing services that inspire collaboration and enable the Future of Work for today’s increasingly digital and mobile workforce. By combining intuitive, innovative tec...
There is growing need for data-driven applications and the need for digital platforms to build these apps. In his session at 19th Cloud Expo, Muddu Sudhakar, VP and GM of Security & IoT at Splunk, will cover different PaaS solutions and Big Data platforms that are available to build applications. In addition, AI and machine learning are creating new requirements that developers need in the building of next-gen apps. The next-generation digital platforms have some of the past platform needs a...
Almost two-thirds of companies either have or soon will have IoT as the backbone of their business in 2016. However, IoT is far more complex than most firms expected. How can you not get trapped in the pitfalls? In his session at @ThingsExpo, Tony Shan, a renowned visionary and thought leader, will introduce a holistic method of IoTification, which is the process of IoTifying the existing technology and business models to adopt and leverage IoT. He will drill down to the components in this fra...
SYS-CON Events announced today that Pulzze Systems will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Pulzze Systems, Inc. provides infrastructure products for the Internet of Things to enable any connected device and system to carry out matched operations without programming. For more information, visit http://www.pulzzesystems.com.
I'm a lonely sensor. I spend all day telling the world how I'm feeling, but none of the other sensors seem to care. I want to be connected. I want to build relationships with other sensors to be more useful for my human. I want my human to understand that when my friends next door are too hot for a while, I'll soon be flaming. And when all my friends go outside without me, I may be left behind. Don't just log my data; use the relationship graph. In his session at @ThingsExpo, Ryan Boyd, Engi...
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace.
From wearable activity trackers to fantasy e-sports, data and technology are transforming the way athletes train for the game and fans engage with their teams. In his session at @ThingsExpo, will present key data findings from leading sports organizations San Francisco 49ers, Orlando Magic NBA team. By utilizing data analytics these sports orgs have recognized new revenue streams, doubled its fan base and streamlined costs at its stadiums. John Paul is the CEO and Founder of VenueNext. Prior ...
In his general session at 18th Cloud Expo, Lee Atchison, Principal Cloud Architect and Advocate at New Relic, discussed cloud as a ‘better data center’ and how it adds new capacity (faster) and improves application availability (redundancy). The cloud is a ‘Dynamic Tool for Dynamic Apps’ and resource allocation is an integral part of your application architecture, so use only the resources you need and allocate /de-allocate resources on the fly.
Using new techniques of information modeling, indexing, and processing, new cloud-based systems can support cloud-based workloads previously not possible for high-throughput insurance, banking, and case-based applications. In his session at 18th Cloud Expo, John Newton, CTO, Founder and Chairman of Alfresco, described how to scale cloud-based content management repositories to store, manage, and retrieve billions of documents and related information with fast and linear scalability. He addres...
SYS-CON Events announced today that Numerex Corp, a leading provider of managed enterprise solutions enabling the Internet of Things (IoT), will exhibit at the 19th International Cloud Expo | @ThingsExpo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Numerex Corp. (NASDAQ:NMRX) is a leading provider of managed enterprise solutions enabling the Internet of Things (IoT). The Company's solutions produce new revenue streams or create operating...
WebRTC adoption has generated a wave of creative uses of communications and collaboration through websites, sales apps, customer care and business applications. As WebRTC has become more mainstream it has evolved to use cases beyond the original peer-to-peer case, which has led to a repeating requirement for interoperability with existing infrastructures. In his session at @ThingsExpo, Graham Holt, Executive Vice President of Daitan Group, will cover implementation examples that have enabled ea...
IoT offers a value of almost $4 trillion to the manufacturing industry through platforms that can improve margins, optimize operations & drive high performance work teams. By using IoT technologies as a foundation, manufacturing customers are integrating worker safety with manufacturing systems, driving deep collaboration and utilizing analytics to exponentially increased per-unit margins. However, as Benoit Lheureux, the VP for Research at Gartner points out, “IoT project implementers often ...
SYS-CON Events announced today that Tintri Inc., a leading producer of VM-aware storage (VAS) for virtualization and cloud environments, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Tintri VM-aware storage is the simplest for virtualized applications and cloud. Organizations including GE, Toyota, United Healthcare, NASA and 6 of the Fortune 15 have said “No to LUNs.” With Tintri they mana...