IoT User Interface Authors: William Schmarzo, Liz McMillan, Elizabeth White, Pat Romanski, Greg O'Connor

Related Topics: @CloudExpo, Microservices Expo, Microsoft Cloud, Containers Expo Blog, IoT User Interface, Agile Computing

@CloudExpo: Article

Applying Big Data and Big Analytics to Customer Engagement

Practical considerations

Customer engagement has long benefited from data and analytics. Knowing more about each of your customers, their attributes, preferences, behaviors and patterns, is essential to fostering meaningful engagement with them. As technologies advance, and more of people's lives are lived online, more and more data about customers is captured and made available. At face value, this is good; more data means better analytics, which means better understanding of customers and therefore more meaningful engagement. However, volumes of data measured in terabytes, petabytes, and beyond are so big they have spawned the terms "Big Data" and "Big Analytics." At this scale, there are practical considerations that must be understood to successfully reap the benefits for customer engagement. This article will explore some of these considerations and provide some suggestions on how to address them.

Customer Data Management (CDM), also known as Customer Data Integration (CDI), is foundational for a Customer Intelligence (CI) or Customer Engagement (CE) system. CDM is rooted in the principles of Master Data Management (MDM), which includes the following:

  • Acquisition and ingestion of multiple, disparate sources, both online and offline, of customer and prospect data
  • Change Data Capture (CDC)
  • Data cleansing, parsing, and standardization
  • Entity Modeling
  • Entity relationship and hierarchy management
  • Entity matching, identity resolution, and persistent key management for key individual, household, company/institution/location entities
  • Rules-based attribute mastering, "Survivorship" or "Build the Best Record"
  • Data lineage, version history, audit, aging, and expiration

It's useful to first make the distinction between attributive and behavioral data. Attributive data, often referred to as profile data, is discrete fields that describe an entity such as an individual's name, address, age, eye color, and income. Behavioral data is a series of events that describe an entity's behavior over time, such as phone calls, web page visits, and financial transactions. Admittedly, there is a slippery slope between the two; a customer's current account balance can be either an attribute or an aggregation of behavioral transactions.

MDM typically focuses on attributive data. Being based on MDM, the same is true for CDM. Personally Identifying Information (PII) such as name, email, address, phone, and username are the primary drivers behind identity resolution. Other attributes such as income, number of children, or gender are attributes that are commonly "mastered" for each of the resolved entities (individual, household, company).

Enter Big Data. As more devices are developed - and adopted - that capture and store data, huge quantities of data are generated. Big Data, by definition, is almost always event-oriented and temporal, and the subset of Big Data that is relevant to a CE system is almost always behavioral in nature (clicks, calls, downloads, purchases, emails, texts, tweets, Facebook posts). Behavioral data is critical to understanding customers (and prospects). And, understanding customers is critical for establishing meaningful and welcome engagement with them. Therefore, Big Data is, or should be, viewed as an invaluable asset to any CE system.

Further, this sort of rich, temporal behavioral data is ripe for analytics. In fact, the term Big Analytics has emerged as a result. Big Analytics can be defined as the ability to execute analytics on Big Data. However, there are some real challenges involved in executing analytics on Big Data, challenges that drive the need for specialized technologies such as Hadoop or Netezza (or both). These technologies must support Massively Parallel Processing (MPP) and, just as importantly if not more so, they must bring the analytics to the data instead of bringing the data to the analytics. Having recently completed a course for Hadoop developers (an excellent course that I highly recommend), I have a heightened appreciation for the challenges related to managing and analyzing data "at scale" and the need for specialized technologies that support Big Data and Big Analytics.

A few significant points regarding Big Analytics should be considered:

  1. Big Analytics allow the build of models on an entire data set, rather than just a sampling or an aggregation. My colleague, Jack McCush, explains: "When building models on a small subset and then validating them against a larger set to make sure the assumptions hold, you can miss the ability to predict rare events. And often those rare events are the ones that drive profit."
  2. Big Analytics allow the build of non-traditional models, for example, social graphs and influencer analytics. Several useful and inherently big sources of data such as Call Detail Records (CDRs) generated from mobile/smart phones and web clickstream data both lend themselves well to these models.
  3. Big Analytics can take even traditional analytics to the next level. Big Analytics allows the execution of traditional correlation and clustering models in a fraction of the time, even with billions of records and hundreds of variables. As Revolution Analytics points out in Advanced 'Big Data' Analytics with R and Hadoop, "Research suggests that a simple algorithm with a large volume of data is more accurate than a sophisticated algorithm with little data. The algorithm is not the competitive advantage; the ability to apply it to huge amounts of data-without compromising performance-generates the competitive advantage."

Big Data is great for a CE system. It paints a rich behavioral picture of customers and prospects and takes CE-enabling analytics to the next level. But what happens when this massive behavioral data is thrown at a CDM/MDM system that is optimized for attributive data? A "basketball through the garden hose" effect might occur. But this doesn't have to happen; there are ways to gracefully extend CDM to manage Big Data.

The key is data classification. Attributive, or profile, data is classified separately from behavioral data. While both contain Source Native Key (e.g., cookie-based visitor id, cell phone number, device id, account number), attributive data can be structured only. Behavioral data, on the other hand, can be structured and unstructured and contains no PII. Big Data almost always falls under the behavioral category.

Importantly, behavioral data requires different processing than attributive data. Since the processing is different, the two streams can be separated just after ingestion, like a fork in the road, with the attributive data going one way and the behavioral data going the other. This is the key to integrating Big Data into a CDM-MDM system without grinding it to a halt. To be fair, the two streams aren't completely independent. The behavioral stream will typically require two things from the attributive stream: Dimension Tables and Master ID-to-Natural Key Cross-References - both of which can be considered as reference data.

Dimension Tables
For example, the "subscriber" dimension table may be required in the Big Data world so that it can be joined to the "web clicks" table. This is done in order to aggregate web clicks by subscriber gender, which only exists in the subscriber table.

Master ID-to-Natural Key Cross-References
Master IDs are created and managed in the CDM-MDM world, but they are often needed for linkage and aggregation in the Big Data world. Shadowing cross-references that map master IDs, such as master individual id, to "source natural keys" into the Big Data world solves this problem.

The two classifications of data are separated into two streams and processed (mostly) independently. How do they come back together? One way this architecture works is that both streams, attributive and behavioral, contain a "source natural key." This is a unique identifier that relates the two streams. For example, web clickstream data typically has an IP address or a web application-managed, cookie-based visitor ID. Transactional data typically has an account number. Mobile data will have a phone number or device ID. These identifiers don't have to mean anything, per se, but are critical for stitching the two streams back together.

It's not just the dimensionalized, aggregated data that is reunited with the profile data, but also the high-value, behavioral analytics attributes (predictive scores, micro-segmentations, etc.) created courtesy of Big Analytics. The attributive data is now greatly enriched by the output of the Big Data processing stream. And, to get things really crazy, these enriched behavioral analytics profile attributes can be used as part of the next cycle of matching; similar, complex behavior patterns can help tip the scales, causing two entities to match that might not have matched otherwise. In the end, CDM-MDM and Big Data can live together harmoniously; Big Data doesn't replace CDM-MDM, but rather extends it.

More Stories By Dan Smith

Dan Smith is a seasoned technical architect with 25 years of experience designing, developing and delivering innovative software and hardware systems.

In his role as Chief Architect at Quaero, Dan is responsible for the architectural integrity of Quaero's Intelligent Engagement platform, focusing on the capability, flexibility, scalability and fitness of purpose of the platform for Quaero's Customer Engagement hosted solutions. Dan's current focus is on development of the Quaero Big Data Management Platform (BDMP) which integrates the principles of Master Data Management and Big Data Management into a single data management platform.

Before joining Quaero, Dan spent 13 years with a Marketing Service Provider startup, where he served as Chief Architect and was instrumental in building the company's customer data management and advanced trigger marketing platforms - both of which contributed to substantial growth for the company, leading ultimately to its acquisition. Prior to that, Dan spent 11 years with IBM in various hardware and software design and development positions. While at IBM, Dan received two Outstanding Technical Achievement awards and published two IBM Technical Disclosure Bulletins. Dan earned an Electrical Engineering degree from the Rutgers College of Engineering.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

@CloudExpo Stories
The Internet of Things (IoT) promises to simplify and streamline our lives by automating routine tasks that distract us from our goals. This promise is based on the ubiquitous deployment of smart, connected devices that link everything from industrial control systems to automobiles to refrigerators. Unfortunately, comparatively few of the devices currently deployed have been developed with an eye toward security, and as the DDoS attacks of late October 2016 have demonstrated, this oversight can ...
President Obama recently announced the launch of a new national awareness campaign to "encourage more Americans to move beyond passwords – adding an extra layer of security like a fingerprint or codes sent to your cellphone." The shift from single passwords to multi-factor authentication couldn’t be timelier or more strategic. This session will focus on why passwords alone are no longer effective, and why the time to act is now. In his session at 19th Cloud Expo, Chris Webber, security strateg...
November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Penta Security is a leading vendor for data security solutions, including its encryption solution, D’Amo. By using FPE technology, D’Amo allows for the implementation of encryption technology to sensitive data fields without modification to schema in the database environment. With businesses having their data become increasingly more complicated in their mission-critical applications (such as ERP, CRM, HRM), continued ...
In the 21st century, security on the Internet has become one of the most important issues. We hear more and more about cyber-attacks on the websites of large corporations, banks and even small businesses. When online we’re concerned not only for our own safety but also our privacy. We have to know that hackers usually start their preparation by investigating the private information of admins – the habits, interests, visited websites and so on. On the other hand, our own security is in danger bec...
In his general session at 18th Cloud Expo, Lee Atchison, Principal Cloud Architect and Advocate at New Relic, discussed cloud as a ‘better data center’ and how it adds new capacity (faster) and improves application availability (redundancy). The cloud is a ‘Dynamic Tool for Dynamic Apps’ and resource allocation is an integral part of your application architecture, so use only the resources you need and allocate /de-allocate resources on the fly.
SYS-CON Events announced today that Cloudbric, a leading website security provider, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Cloudbric is an elite full service website protection solution specifically designed for IT novices, entrepreneurs, and small and medium businesses. First launched in 2015, Cloudbric is based on the enterprise level Web Application Firewall by Penta Security Sys...
SYS-CON Events announced today that Impiger Technologies will exhibit in Booth #109 at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Impiger Technologies is a world-class, enterprise software product engineering company specializing in Mobile Application Development, Cloud Applications, Microsoft Technology Solutions, Web Technology and Telecom Services. Impiger Technologies helps enterprises improve busi...
Virgil consists of an open-source encryption library, which implements Cryptographic Message Syntax (CMS) and Elliptic Curve Integrated Encryption Scheme (ECIES) (including RSA schema), a Key Management API, and a cloud-based Key Management Service (Virgil Keys). The Virgil Keys Service consists of a public key service and a private key escrow service. 

SYS-CON Events announced today that Cemware will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Use MATLAB functions by just visiting website mathfreeon.com. MATLAB compatible, freely usable, online platform services. As of October 2016, 80,000 users from 180 countries are enjoying our platform service.
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at Cloud Expo, Ed Featherston, a director and senior enterprise architect at Collaborative Consulting, will discuss the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
Digitization is driving a fundamental change in society that is transforming the way businesses work with their customers, their supply chains and their people. Digital transformation leverages DevOps best practices, such as Agile Parallel Development, Continuous Delivery and Agile Operations to capitalize on opportunities and create competitive differentiation in the application economy. However, information security has been notably absent from the DevOps movement. Speed doesn’t have to negat...
SYS-CON Events announced today that eCube Systems, the leading provider of modern development tools and best practices for Continuous Integration on OpenVMS, will exhibit at SYS-CON's @DevOpsSummit at Cloud Expo New York, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. eCube Systems offers a family of middleware products and development tools that maximize return on technology investment by leveraging existing technical equity to meet evolving business needs. ...
SYS-CON Events announced today that MathFreeOn will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. MathFreeOn is Software as a Service (SaaS) used in Engineering and Math education. Write scripts and solve math problems online. MathFreeOn provides online courses for beginners or amateurs who have difficulties in writing scripts. In accordance with various mathematical topics, there are more tha...
In an era of historic innovation fueled by unprecedented access to data and technology, the low cost and risk of entering new markets has leveled the playing field for business. Today, any ambitious innovator can easily introduce a new application or product that can reinvent business models and transform the client experience. In their Day 2 Keynote at 19th Cloud Expo, Mercer Rowe, IBM Vice President of Strategic Alliances, and Raejeanne Skillern, Intel Vice President of Data Center Group and ...
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
@ThingsExpo has been named the Top 5 Most Influential Internet of Things Brand by Onalytica in the ‘The Internet of Things Landscape 2015: Top 100 Individuals and Brands.' Onalytica analyzed Twitter conversations around the #IoT debate to uncover the most influential brands and individuals driving the conversation. Onalytica captured data from 56,224 users. The PageRank based methodology they use to extract influencers on a particular topic (tweets mentioning #InternetofThings or #IoT in this ...
Join Impiger for their featured webinar: ‘Cloud Computing: A Roadmap to Modern Software Delivery’ on November 10, 2016, at 12:00 pm CST. Very few companies have not experienced some impact to their IT delivery due to the evolution of cloud computing. This webinar is not about deciding whether you should entertain moving some or all of your IT to the cloud, but rather, a detailed look under the hood to help IT professionals understand how cloud adoption has evolved and what trends will impact th...
"We've discovered that after shows 80% if leads that people get, 80% of the conversations end up on the show floor, meaning people forget about it, people forget who they talk to, people forget that there are actual business opportunities to be had here so we try to help out and keep the conversations going," explained Jeff Mesnik, Founder and President of ContentMX, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
There is growing need for data-driven applications and the need for digital platforms to build these apps. In his session at 19th Cloud Expo, Muddu Sudhakar, VP and GM of Security & IoT at Splunk, will cover different PaaS solutions and Big Data platforms that are available to build applications. In addition, AI and machine learning are creating new requirements that developers need in the building of next-gen apps. The next-generation digital platforms have some of the past platform needs a...
Enterprises have been using both Big Data and virtualization for years. Until recently, however, most enterprises have not combined the two. Big Data's demands for higher levels of performance, the ability to control quality-of-service (QoS), and the ability to adhere to SLAs have kept it on bare metal, apart from the modern data center cloud. With recent technology innovations, we've seen the advantages of bare metal erode to such a degree that the enhanced flexibility and reduced costs that cl...