Click here to close now.


IoT User Interface Authors: Kevin Benedict, David H Deans, Liz McMillan, Trevor Parsons, Gary Kaiser

Related Topics: @CloudExpo, Microservices Expo, Microsoft Cloud, Containers Expo Blog, IoT User Interface, Agile Computing

@CloudExpo: Article

Applying Big Data and Big Analytics to Customer Engagement

Practical considerations

Customer engagement has long benefited from data and analytics. Knowing more about each of your customers, their attributes, preferences, behaviors and patterns, is essential to fostering meaningful engagement with them. As technologies advance, and more of people's lives are lived online, more and more data about customers is captured and made available. At face value, this is good; more data means better analytics, which means better understanding of customers and therefore more meaningful engagement. However, volumes of data measured in terabytes, petabytes, and beyond are so big they have spawned the terms "Big Data" and "Big Analytics." At this scale, there are practical considerations that must be understood to successfully reap the benefits for customer engagement. This article will explore some of these considerations and provide some suggestions on how to address them.

Customer Data Management (CDM), also known as Customer Data Integration (CDI), is foundational for a Customer Intelligence (CI) or Customer Engagement (CE) system. CDM is rooted in the principles of Master Data Management (MDM), which includes the following:

  • Acquisition and ingestion of multiple, disparate sources, both online and offline, of customer and prospect data
  • Change Data Capture (CDC)
  • Data cleansing, parsing, and standardization
  • Entity Modeling
  • Entity relationship and hierarchy management
  • Entity matching, identity resolution, and persistent key management for key individual, household, company/institution/location entities
  • Rules-based attribute mastering, "Survivorship" or "Build the Best Record"
  • Data lineage, version history, audit, aging, and expiration

It's useful to first make the distinction between attributive and behavioral data. Attributive data, often referred to as profile data, is discrete fields that describe an entity such as an individual's name, address, age, eye color, and income. Behavioral data is a series of events that describe an entity's behavior over time, such as phone calls, web page visits, and financial transactions. Admittedly, there is a slippery slope between the two; a customer's current account balance can be either an attribute or an aggregation of behavioral transactions.

MDM typically focuses on attributive data. Being based on MDM, the same is true for CDM. Personally Identifying Information (PII) such as name, email, address, phone, and username are the primary drivers behind identity resolution. Other attributes such as income, number of children, or gender are attributes that are commonly "mastered" for each of the resolved entities (individual, household, company).

Enter Big Data. As more devices are developed - and adopted - that capture and store data, huge quantities of data are generated. Big Data, by definition, is almost always event-oriented and temporal, and the subset of Big Data that is relevant to a CE system is almost always behavioral in nature (clicks, calls, downloads, purchases, emails, texts, tweets, Facebook posts). Behavioral data is critical to understanding customers (and prospects). And, understanding customers is critical for establishing meaningful and welcome engagement with them. Therefore, Big Data is, or should be, viewed as an invaluable asset to any CE system.

Further, this sort of rich, temporal behavioral data is ripe for analytics. In fact, the term Big Analytics has emerged as a result. Big Analytics can be defined as the ability to execute analytics on Big Data. However, there are some real challenges involved in executing analytics on Big Data, challenges that drive the need for specialized technologies such as Hadoop or Netezza (or both). These technologies must support Massively Parallel Processing (MPP) and, just as importantly if not more so, they must bring the analytics to the data instead of bringing the data to the analytics. Having recently completed a course for Hadoop developers (an excellent course that I highly recommend), I have a heightened appreciation for the challenges related to managing and analyzing data "at scale" and the need for specialized technologies that support Big Data and Big Analytics.

A few significant points regarding Big Analytics should be considered:

  1. Big Analytics allow the build of models on an entire data set, rather than just a sampling or an aggregation. My colleague, Jack McCush, explains: "When building models on a small subset and then validating them against a larger set to make sure the assumptions hold, you can miss the ability to predict rare events. And often those rare events are the ones that drive profit."
  2. Big Analytics allow the build of non-traditional models, for example, social graphs and influencer analytics. Several useful and inherently big sources of data such as Call Detail Records (CDRs) generated from mobile/smart phones and web clickstream data both lend themselves well to these models.
  3. Big Analytics can take even traditional analytics to the next level. Big Analytics allows the execution of traditional correlation and clustering models in a fraction of the time, even with billions of records and hundreds of variables. As Revolution Analytics points out in Advanced 'Big Data' Analytics with R and Hadoop, "Research suggests that a simple algorithm with a large volume of data is more accurate than a sophisticated algorithm with little data. The algorithm is not the competitive advantage; the ability to apply it to huge amounts of data-without compromising performance-generates the competitive advantage."

Big Data is great for a CE system. It paints a rich behavioral picture of customers and prospects and takes CE-enabling analytics to the next level. But what happens when this massive behavioral data is thrown at a CDM/MDM system that is optimized for attributive data? A "basketball through the garden hose" effect might occur. But this doesn't have to happen; there are ways to gracefully extend CDM to manage Big Data.

The key is data classification. Attributive, or profile, data is classified separately from behavioral data. While both contain Source Native Key (e.g., cookie-based visitor id, cell phone number, device id, account number), attributive data can be structured only. Behavioral data, on the other hand, can be structured and unstructured and contains no PII. Big Data almost always falls under the behavioral category.

Importantly, behavioral data requires different processing than attributive data. Since the processing is different, the two streams can be separated just after ingestion, like a fork in the road, with the attributive data going one way and the behavioral data going the other. This is the key to integrating Big Data into a CDM-MDM system without grinding it to a halt. To be fair, the two streams aren't completely independent. The behavioral stream will typically require two things from the attributive stream: Dimension Tables and Master ID-to-Natural Key Cross-References - both of which can be considered as reference data.

Dimension Tables
For example, the "subscriber" dimension table may be required in the Big Data world so that it can be joined to the "web clicks" table. This is done in order to aggregate web clicks by subscriber gender, which only exists in the subscriber table.

Master ID-to-Natural Key Cross-References
Master IDs are created and managed in the CDM-MDM world, but they are often needed for linkage and aggregation in the Big Data world. Shadowing cross-references that map master IDs, such as master individual id, to "source natural keys" into the Big Data world solves this problem.

The two classifications of data are separated into two streams and processed (mostly) independently. How do they come back together? One way this architecture works is that both streams, attributive and behavioral, contain a "source natural key." This is a unique identifier that relates the two streams. For example, web clickstream data typically has an IP address or a web application-managed, cookie-based visitor ID. Transactional data typically has an account number. Mobile data will have a phone number or device ID. These identifiers don't have to mean anything, per se, but are critical for stitching the two streams back together.

It's not just the dimensionalized, aggregated data that is reunited with the profile data, but also the high-value, behavioral analytics attributes (predictive scores, micro-segmentations, etc.) created courtesy of Big Analytics. The attributive data is now greatly enriched by the output of the Big Data processing stream. And, to get things really crazy, these enriched behavioral analytics profile attributes can be used as part of the next cycle of matching; similar, complex behavior patterns can help tip the scales, causing two entities to match that might not have matched otherwise. In the end, CDM-MDM and Big Data can live together harmoniously; Big Data doesn't replace CDM-MDM, but rather extends it.

More Stories By Dan Smith

Dan Smith is a seasoned technical architect with 25 years of experience designing, developing and delivering innovative software and hardware systems.

In his role as Chief Architect at Quaero, Dan is responsible for the architectural integrity of Quaero's Intelligent Engagement platform, focusing on the capability, flexibility, scalability and fitness of purpose of the platform for Quaero's Customer Engagement hosted solutions. Dan's current focus is on development of the Quaero Big Data Management Platform (BDMP) which integrates the principles of Master Data Management and Big Data Management into a single data management platform.

Before joining Quaero, Dan spent 13 years with a Marketing Service Provider startup, where he served as Chief Architect and was instrumental in building the company's customer data management and advanced trigger marketing platforms - both of which contributed to substantial growth for the company, leading ultimately to its acquisition. Prior to that, Dan spent 11 years with IBM in various hardware and software design and development positions. While at IBM, Dan received two Outstanding Technical Achievement awards and published two IBM Technical Disclosure Bulletins. Dan earned an Electrical Engineering degree from the Rutgers College of Engineering.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

@CloudExpo Stories
We all know that data growth is exploding and storage budgets are shrinking. Instead of showing you charts on about how much data there is, in his General Session at 17th Cloud Expo, Scott Cleland, Senior Director of Product Marketing at HGST, showed how to capture all of your data in one place. After you have your data under control, you can then analyze it in one place, saving time and resources.
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi’s VP Business Development and Engineering, explored the IoT cloud-based platform technologies driving t...
As organizations shift towards IT-as-a-service models, the need for managing & protecting data residing across physical, virtual, and now cloud environments grows with it. CommVault can ensure protection & E-Discovery of your data - whether in a private cloud, a Service Provider delivered public cloud, or a hybrid cloud environment – across the heterogeneous enterprise.
In recent years, at least 40% of companies using cloud applications have experienced data loss. One of the best prevention against cloud data loss is backing up your cloud data. In his General Session at 17th Cloud Expo, Sam McIntyre, Partner Enablement Specialist at eFolder, presented how organizations can use eFolder Cloudfinder to automate backups of cloud application data. He also demonstrated how easy it is to search and restore cloud application data using Cloudfinder.
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data...
Internet of @ThingsExpo, taking place June 7-9, 2016 at Javits Center, New York City and Nov 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 18th International @CloudExpo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world and ThingsExpo New York Call for Papers is now open.
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo 2016 in New York and Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty ...
Just over a week ago I received a long and loud sustained applause for a presentation I delivered at this year’s Cloud Expo in Santa Clara. I was extremely pleased with the turnout and had some very good conversations with many of the attendees. Over the next few days I had many more meaningful conversations and was not only happy with the results but also learned a few new things. Here is everything I learned in those three days distilled into three short points.
DevOps is about increasing efficiency, but nothing is more inefficient than building the same application twice. However, this is a routine occurrence with enterprise applications that need both a rich desktop web interface and strong mobile support. With recent technological advances from Isomorphic Software and others, rich desktop and tuned mobile experiences can now be created with a single codebase – without compromising functionality, performance or usability. In his session at DevOps Su...
As organizations realize the scope of the Internet of Things, gaining key insights from Big Data, through the use of advanced analytics, becomes crucial. However, IoT also creates the need for petabyte scale storage of data from millions of devices. A new type of Storage is required which seamlessly integrates robust data analytics with massive scale. These storage systems will act as “smart systems” provide in-place analytics that speed discovery and enable businesses to quickly derive meaningf...
SYS-CON Events announced today that Alert Logic, Inc., the leading provider of Security-as-a-Service solutions for the cloud, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Alert Logic, Inc., provides Security-as-a-Service for on-premises, cloud, and hybrid infrastructures, delivering deep security insight and continuous protection for customers at a lower cost than traditional security solutions. Ful...
In his keynote at @ThingsExpo, Chris Matthieu, Director of IoT Engineering at Citrix and co-founder and CTO of Octoblu, focused on building an IoT platform and company. He provided a behind-the-scenes look at Octoblu’s platform, business, and pivots along the way (including the Citrix acquisition of Octoblu).
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new da...
In his General Session at 17th Cloud Expo, Bruce Swann, Senior Product Marketing Manager for Adobe Campaign, explored the key ingredients of cross-channel marketing in a digital world. Learn how the Adobe Marketing Cloud can help marketers embrace opportunities for personalized, relevant and real-time customer engagement across offline (direct mail, point of sale, call center) and digital (email, website, SMS, mobile apps, social networks, connected objects).
Culture is the most important ingredient of DevOps. The challenge for most organizations is defining and communicating a vision of beneficial DevOps culture for their organizations, and then facilitating the changes needed to achieve that. Often this comes down to an ability to provide true leadership. As a CIO, are your direct reports IT managers or are they IT leaders? The hard truth is that many IT managers have risen through the ranks based on their technical skills, not their leadership ab...
The Internet of Everything is re-shaping technology trends–moving away from “request/response” architecture to an “always-on” Streaming Web where data is in constant motion and secure, reliable communication is an absolute necessity. As more and more THINGS go online, the challenges that developers will need to address will only increase exponentially. In his session at @ThingsExpo, Todd Greene, Founder & CEO of PubNub, exploreed the current state of IoT connectivity and review key trends and t...
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
With all the incredible momentum behind the Internet of Things (IoT) industry, it is easy to forget that not a single CEO wakes up and wonders if “my IoT is broken.” What they wonder is if they are making the right decisions to do all they can to increase revenue, decrease costs, and improve customer experience – effectively the same challenges they have always had in growing their business. The exciting thing about the IoT industry is now these decisions can be better, faster, and smarter. Now ...
In his General Session at DevOps Summit, Asaf Yigal, Co-Founder & VP of Product at, explored the value of Kibana 4 for log analysis and provided a hands-on tutorial on how to set up Kibana 4 and get the most out of Apache log files. He examined three use cases: IT operations, business intelligence, and security and compliance. Asaf Yigal is co-founder and VP of Product at log analytics software company In the past, he was co-founder of social-trading platform Currensee, which...
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound...