Welcome!

Machine Learning Authors: Ed Featherston, Liz McMillan, Elizabeth White, Dan Blacharski, William Schmarzo

Related Topics: @CloudExpo, Microservices Expo, Microsoft Cloud, Containers Expo Blog, Machine Learning , Agile Computing

@CloudExpo: Article

Applying Big Data and Big Analytics to Customer Engagement

Practical considerations

Customer engagement has long benefited from data and analytics. Knowing more about each of your customers, their attributes, preferences, behaviors and patterns, is essential to fostering meaningful engagement with them. As technologies advance, and more of people's lives are lived online, more and more data about customers is captured and made available. At face value, this is good; more data means better analytics, which means better understanding of customers and therefore more meaningful engagement. However, volumes of data measured in terabytes, petabytes, and beyond are so big they have spawned the terms "Big Data" and "Big Analytics." At this scale, there are practical considerations that must be understood to successfully reap the benefits for customer engagement. This article will explore some of these considerations and provide some suggestions on how to address them.

Customer Data Management (CDM), also known as Customer Data Integration (CDI), is foundational for a Customer Intelligence (CI) or Customer Engagement (CE) system. CDM is rooted in the principles of Master Data Management (MDM), which includes the following:

  • Acquisition and ingestion of multiple, disparate sources, both online and offline, of customer and prospect data
  • Change Data Capture (CDC)
  • Data cleansing, parsing, and standardization
  • Entity Modeling
  • Entity relationship and hierarchy management
  • Entity matching, identity resolution, and persistent key management for key individual, household, company/institution/location entities
  • Rules-based attribute mastering, "Survivorship" or "Build the Best Record"
  • Data lineage, version history, audit, aging, and expiration

It's useful to first make the distinction between attributive and behavioral data. Attributive data, often referred to as profile data, is discrete fields that describe an entity such as an individual's name, address, age, eye color, and income. Behavioral data is a series of events that describe an entity's behavior over time, such as phone calls, web page visits, and financial transactions. Admittedly, there is a slippery slope between the two; a customer's current account balance can be either an attribute or an aggregation of behavioral transactions.

MDM typically focuses on attributive data. Being based on MDM, the same is true for CDM. Personally Identifying Information (PII) such as name, email, address, phone, and username are the primary drivers behind identity resolution. Other attributes such as income, number of children, or gender are attributes that are commonly "mastered" for each of the resolved entities (individual, household, company).

Enter Big Data. As more devices are developed - and adopted - that capture and store data, huge quantities of data are generated. Big Data, by definition, is almost always event-oriented and temporal, and the subset of Big Data that is relevant to a CE system is almost always behavioral in nature (clicks, calls, downloads, purchases, emails, texts, tweets, Facebook posts). Behavioral data is critical to understanding customers (and prospects). And, understanding customers is critical for establishing meaningful and welcome engagement with them. Therefore, Big Data is, or should be, viewed as an invaluable asset to any CE system.

Further, this sort of rich, temporal behavioral data is ripe for analytics. In fact, the term Big Analytics has emerged as a result. Big Analytics can be defined as the ability to execute analytics on Big Data. However, there are some real challenges involved in executing analytics on Big Data, challenges that drive the need for specialized technologies such as Hadoop or Netezza (or both). These technologies must support Massively Parallel Processing (MPP) and, just as importantly if not more so, they must bring the analytics to the data instead of bringing the data to the analytics. Having recently completed a course for Hadoop developers (an excellent course that I highly recommend), I have a heightened appreciation for the challenges related to managing and analyzing data "at scale" and the need for specialized technologies that support Big Data and Big Analytics.

A few significant points regarding Big Analytics should be considered:

  1. Big Analytics allow the build of models on an entire data set, rather than just a sampling or an aggregation. My colleague, Jack McCush, explains: "When building models on a small subset and then validating them against a larger set to make sure the assumptions hold, you can miss the ability to predict rare events. And often those rare events are the ones that drive profit."
  2. Big Analytics allow the build of non-traditional models, for example, social graphs and influencer analytics. Several useful and inherently big sources of data such as Call Detail Records (CDRs) generated from mobile/smart phones and web clickstream data both lend themselves well to these models.
  3. Big Analytics can take even traditional analytics to the next level. Big Analytics allows the execution of traditional correlation and clustering models in a fraction of the time, even with billions of records and hundreds of variables. As Revolution Analytics points out in Advanced 'Big Data' Analytics with R and Hadoop, "Research suggests that a simple algorithm with a large volume of data is more accurate than a sophisticated algorithm with little data. The algorithm is not the competitive advantage; the ability to apply it to huge amounts of data-without compromising performance-generates the competitive advantage."

Big Data is great for a CE system. It paints a rich behavioral picture of customers and prospects and takes CE-enabling analytics to the next level. But what happens when this massive behavioral data is thrown at a CDM/MDM system that is optimized for attributive data? A "basketball through the garden hose" effect might occur. But this doesn't have to happen; there are ways to gracefully extend CDM to manage Big Data.

The key is data classification. Attributive, or profile, data is classified separately from behavioral data. While both contain Source Native Key (e.g., cookie-based visitor id, cell phone number, device id, account number), attributive data can be structured only. Behavioral data, on the other hand, can be structured and unstructured and contains no PII. Big Data almost always falls under the behavioral category.

Importantly, behavioral data requires different processing than attributive data. Since the processing is different, the two streams can be separated just after ingestion, like a fork in the road, with the attributive data going one way and the behavioral data going the other. This is the key to integrating Big Data into a CDM-MDM system without grinding it to a halt. To be fair, the two streams aren't completely independent. The behavioral stream will typically require two things from the attributive stream: Dimension Tables and Master ID-to-Natural Key Cross-References - both of which can be considered as reference data.

Dimension Tables
For example, the "subscriber" dimension table may be required in the Big Data world so that it can be joined to the "web clicks" table. This is done in order to aggregate web clicks by subscriber gender, which only exists in the subscriber table.

Master ID-to-Natural Key Cross-References
Master IDs are created and managed in the CDM-MDM world, but they are often needed for linkage and aggregation in the Big Data world. Shadowing cross-references that map master IDs, such as master individual id, to "source natural keys" into the Big Data world solves this problem.

The two classifications of data are separated into two streams and processed (mostly) independently. How do they come back together? One way this architecture works is that both streams, attributive and behavioral, contain a "source natural key." This is a unique identifier that relates the two streams. For example, web clickstream data typically has an IP address or a web application-managed, cookie-based visitor ID. Transactional data typically has an account number. Mobile data will have a phone number or device ID. These identifiers don't have to mean anything, per se, but are critical for stitching the two streams back together.

It's not just the dimensionalized, aggregated data that is reunited with the profile data, but also the high-value, behavioral analytics attributes (predictive scores, micro-segmentations, etc.) created courtesy of Big Analytics. The attributive data is now greatly enriched by the output of the Big Data processing stream. And, to get things really crazy, these enriched behavioral analytics profile attributes can be used as part of the next cycle of matching; similar, complex behavior patterns can help tip the scales, causing two entities to match that might not have matched otherwise. In the end, CDM-MDM and Big Data can live together harmoniously; Big Data doesn't replace CDM-MDM, but rather extends it.

More Stories By Dan Smith

Dan Smith is a seasoned technical architect with 25 years of experience designing, developing and delivering innovative software and hardware systems.

In his role as Chief Architect at Quaero, Dan is responsible for the architectural integrity of Quaero's Intelligent Engagement platform, focusing on the capability, flexibility, scalability and fitness of purpose of the platform for Quaero's Customer Engagement hosted solutions. Dan's current focus is on development of the Quaero Big Data Management Platform (BDMP) which integrates the principles of Master Data Management and Big Data Management into a single data management platform.

Before joining Quaero, Dan spent 13 years with a Marketing Service Provider startup, where he served as Chief Architect and was instrumental in building the company's customer data management and advanced trigger marketing platforms - both of which contributed to substantial growth for the company, leading ultimately to its acquisition. Prior to that, Dan spent 11 years with IBM in various hardware and software design and development positions. While at IBM, Dan received two Outstanding Technical Achievement awards and published two IBM Technical Disclosure Bulletins. Dan earned an Electrical Engineering degree from the Rutgers College of Engineering.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@CloudExpo Stories
"Storpool does only block-level storage so we do one thing extremely well. The growth in data is what drives the move to software-defined technologies in general and software-defined storage," explained Boyan Ivanov, CEO and co-founder at StorPool, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
As DevOps methodologies expand their reach across the enterprise, organizations face the daunting challenge of adapting related cloud strategies to ensure optimal alignment, from managing complexity to ensuring proper governance. How can culture, automation, legacy apps and even budget be reexamined to enable this ongoing shift within the modern software factory? In her Day 2 Keynote at @DevOpsSummit at 21st Cloud Expo, Aruna Ravichandran, VP, DevOps Solutions Marketing, CA Technologies, was jo...
As Marc Andreessen says software is eating the world. Everything is rapidly moving toward being software-defined – from our phones and cars through our washing machines to the datacenter. However, there are larger challenges when implementing software defined on a larger scale - when building software defined infrastructure. In his session at 16th Cloud Expo, Boyan Ivanov, CEO of StorPool, provided some practical insights on what, how and why when implementing "software-defined" in the datacent...
Blockchain. A day doesn’t seem to go by without seeing articles and discussions about the technology. According to PwC executive Seamus Cushley, approximately $1.4B has been invested in blockchain just last year. In Gartner’s recent hype cycle for emerging technologies, blockchain is approaching the peak. It is considered by Gartner as one of the ‘Key platform-enabling technologies to track.’ While there is a lot of ‘hype vs reality’ discussions going on, there is no arguing that blockchain is b...
Blockchain is a shared, secure record of exchange that establishes trust, accountability and transparency across business networks. Supported by the Linux Foundation's open source, open-standards based Hyperledger Project, Blockchain has the potential to improve regulatory compliance, reduce cost as well as advance trade. Are you curious about how Blockchain is built for business? In her session at 21st Cloud Expo, René Bostic, Technical VP of the IBM Cloud Unit in North America, discussed the b...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Is advanced scheduling in Kubernetes achievable?Yes, however, how do you properly accommodate every real-life scenario that a Kubernetes user might encounter? How do you leverage advanced scheduling techniques to shape and describe each scenario in easy-to-use rules and configurations? In his session at @DevOpsSummit at 21st Cloud Expo, Oleg Chunikhin, CTO at Kublr, answered these questions and demonstrated techniques for implementing advanced scheduling. For example, using spot instances and co...
The use of containers by developers -- and now increasingly IT operators -- has grown from infatuation to deep and abiding love. But as with any long-term affair, the honeymoon soon leads to needing to live well together ... and maybe even getting some relationship help along the way. And so it goes with container orchestration and automation solutions, which are rapidly emerging as the means to maintain the bliss between rapid container adoption and broad container use among multiple cloud host...
The cloud era has reached the stage where it is no longer a question of whether a company should migrate, but when. Enterprises have embraced the outsourcing of where their various applications are stored and who manages them, saving significant investment along the way. Plus, the cloud has become a defining competitive edge. Companies that fail to successfully adapt risk failure. The media, of course, continues to extol the virtues of the cloud, including how easy it is to get there. Migrating...
Imagine if you will, a retail floor so densely packed with sensors that they can pick up the movements of insects scurrying across a store aisle. Or a component of a piece of factory equipment so well-instrumented that its digital twin provides resolution down to the micrometer.
The need for greater agility and scalability necessitated the digital transformation in the form of following equation: monolithic to microservices to serverless architecture (FaaS). To keep up with the cut-throat competition, the organisations need to update their technology stack to make software development their differentiating factor. Thus microservices architecture emerged as a potential method to provide development teams with greater flexibility and other advantages, such as the abili...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settle...
Product connectivity goes hand and hand these days with increased use of personal data. New IoT devices are becoming more personalized than ever before. In his session at 22nd Cloud Expo | DXWorld Expo, Nicolas Fierro, CEO of MIMIR Blockchain Solutions, will discuss how in order to protect your data and privacy, IoT applications need to embrace Blockchain technology for a new level of product security never before seen - or needed.
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
In his general session at 21st Cloud Expo, Greg Dumas, Calligo’s Vice President and G.M. of US operations, discussed the new Global Data Protection Regulation and how Calligo can help business stay compliant in digitally globalized world. Greg Dumas is Calligo's Vice President and G.M. of US operations. Calligo is an established service provider that provides an innovative platform for trusted cloud solutions. Calligo’s customers are typically most concerned about GDPR compliance, application p...
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, discussed how from store operations and ...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
"IBM is really all in on blockchain. We take a look at sort of the history of blockchain ledger technologies. It started out with bitcoin, Ethereum, and IBM evaluated these particular blockchain technologies and found they were anonymous and permissionless and that many companies were looking for permissioned blockchain," stated René Bostic, Technical VP of the IBM Cloud Unit in North America, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventi...