Welcome!

AJAX & REA Authors: Andreas Grabner, Tim Hinds, Alfredo Diaz, Kevin Benedict, RealWire News Distribution

Related Topics: SOA & WOA

SOA & WOA: Article

In-Memory BI Is Not the Future, It’s the Past

Why the current in-memory BI hype can be misleading.

In recent times, one of the most popular subjects related to the field of Business Intelligence (BI) has been In-memory BI technology. The subject gained popularity largely due to the success of QlikTech, provider of the in-memory-based QlikView BI product. Following QlikTech’s lead, many other BI vendors have jumped on the in-memory “hype wagon,” including the software giant, Microsoft, which has been aggressively marketing PowerPivot, their own in-memory database engine.

The increasing hype surrounding in-memory BI has caused BI consultants, analysts and even vendors to spew out endless articles, blog posts and white papers on the subject, many of which have also gone the extra mile to describe in-memory technology as the future of business intelligence, the death blow to the data warehouse and the swan song of OLAP technology. I find one of these in my inbox every couple of weeks.

Just so it is clear - the concept of in-memory business intelligence is not new. It has been around for many years. The only reason it became widely known recently is because it wasn’t feasible before 64-bit computing became commonly available. Before 64-bit processors, the maximum amount of RAM a computer could utilize was barely 4GB, which is hardly enough to accommodate even the simplest of multi-user BI solutions. Only when 64-bit systems became cheap enough did it became possible to consider in-memory technology as a practical option for BI.

The success of QlikTech and the relentless activities of Microsoft’s marketing machine have managed to confuse many in terms of what role in-memory technology plays in BI implementations. And that is why many of the articles out there, which are written by marketers or market analysts who are not proficient in the internal workings of database technology (and assume their readers aren’t either), are usually filled with inaccuracies and, in many cases, pure nonsense.

The purpose of this article is to put both in-memory and disk-based BI technologies in perspective, explain the differences between them and finally lay out, in simple terms, why disk-based BI technology isn’t on its way to extinction. Rather, disk-based BI technology is evolving into something that will significantly limit the use of in-memory technology in typical BI implementations.

But before we get to that, for the sake of those who are not very familiar with in-memory BI technology, here’s a brief introduction to the topic.

Disk and RAM
Generally speaking, your computer has two types of data storage mechanisms – disk (often called a hard disk) and RAM (random access memory). The important differences between them (for this discussion) are outlined in the following table:

Disk RAM
Abundant Scarce
Slower Faster
Cheap Expensive
Long-term Short-term

Most modern computers have 15-100 times more available disk storage than they do RAM. My laptop, for example, has 8GB of RAM and 300GB of available disk space. However, reading data from disk is much slower than reading the same data from RAM. This is one of the reasons why 1GB of RAM costs approximately 320 times that of 1GB of disk space.

Another important distinction is what happens to the data when the computer is powered down: data stored on disk is unaffected (which is why your saved documents are still there the next time you turn on your computer), but data residing in RAM is instantly lost. So, while you don’t have to re-create your disk-stored Microsoft Word documents after a reboot, you do have to re-load the operating system, re-launch the word processor and reload your document. This is because applications and their internal data are partly, if not entirely, stored in RAM while they are running.

Disk-based Databases and In-memory Databases
Now that we have a general idea of what the basic differences between disk and RAM are, what are the differences between disk-based and in-memory databases? Well, all data is always kept on hard disks (so that they are saved even when the power goes down). When we talk about whether a database is disk-based or in-memory, we are talking about where the data resides while it is actively being queried by an application: with disk-based databases, the data is queried while stored on disk and with in-memory databases, the data being queried is first loaded into RAM.

Disk-based databases are engineered to efficiently query data residing on the hard drive. At a very basic level, these databases assume that the entire data cannot fit inside the relatively small amount of RAM available and therefore must have very efficient disk reads in order for queries to be returned within a reasonable time frame. The engineers of such databases have the benefit of unlimited storage, but must face the challenges of relying on relatively slow disk operations.

On the other hand, in-memory databases work under the opposite assumption that the data can, in fact, fit entirely inside the RAM. The engineers of in-memory databases benefit from utilizing the fastest storage system a computer has (RAM), but have much less of it at their disposal.

That is the fundamental trade-off in disk-based and in-memory technologies: faster reads and limited amounts of data versus slower reads and practically unlimited amounts of data. These are two critical considerations for business intelligence applications, as it is important both to have fast query response times and to have access to as much data as possible.

The Data Challenge
A business intelligence solution (almost) always has a single data store at its center. This data store is usually called a database, data warehouse, data mart or OLAP cube. This is where the data that can be queried by the BI application is stored.

The challenges in creating this data store using traditional disk-based technologies is what gave in-memory technology its 15 minutes (ok, maybe 30 minutes) of fame. Having the entire data model stored inside RAM allowed bypassing some of the challenges encountered by their disk-based counterparts, namely the issue of query response times or ‘slow queries.’

Disk-based BI
When saying ‘traditional disk-based’ technologies, we typically mean relational database management systems (RDBMS) such as SQL Server, Oracle, MySQL and many others. It’s true that having a BI solution perform well using these types of databases as their backbone is far more challenging than simply shoving the entire data model into RAM, where performance gains would be immediate due to the fact RAM is so much faster than disk.

It’s commonly thought that relational databases are too slow for BI queries over data in (or close to) its raw form due to the fact they are disk-based. The truth is, however, that it’s because of how they use the disk and how often they use it.

Relational databases were designed with transactional processing in mind. But having a database be able to support high-performance insertions and updates of transactions (i.e., rows in a table) as well as properly accommodating the types of queries typically executed in BI solutions (e.g., aggregating, grouping, joining) is impossible. These are two mutually-exclusive engineering goals, that is to say they require completely different architectures at the very core. You simply can’t use the same approach to ideally achieve both.

In addition, the standard query language used to extract transactions from relational databases (SQL) is syntactically designed for the efficient fetching of rows, while rare are the cases in BI where you would need to scan or retrieve an entire row of data. It is nearly impossible to formulate an efficient BI query using SQL syntax.

So while relational databases are great as the backbone of operational applications such as CRM, ERP or Web sites, where transactions are frequently and simultaneously inserted, they are a poor choice for supporting analytic applications which usually involve simultaneous retrieval of partial rows along with heavy calculations.

In-memory BI
In-memory databases approach the querying problem by loading the entire dataset into RAM. In so doing, they remove the need to access the disk to run queries, thus gaining an immediate and substantial performance advantage (simply because scanning data in RAM is orders of magnitude faster than reading it from disk). Some of these databases introduce additional optimizations which further improve performance. Most of them also employ compression techniques to represent even more data in the same amount of RAM.

Regardless of what fancy footwork is used with an in-memory database, storing the entire dataset in RAM has a serious implication: the amount of data you can query with in-memory technology is limited by the amount of free RAM available, and there will always be much less available RAM than available disk space.

The bottom line is that this limited memory space means that the quality and effectiveness of your BI application will be hindered: the more historical data to which you have access and/or the more fields you can query, the better analysis, insight and, well, intelligence you can get.

You could add more and more RAM, but then the hardware you require becomes exponentially more expensive. The fact that 64-bit computers are cheap and can theoretically support unlimited amounts of RAM does not mean they actually do in practice. A standard desktop-class (read: cheap) computer with standard hardware physically supports up to 12GB of RAM today. If you need more, you can move on to a different class of computer which costs about twice as much and will allow you up to 64GB. Beyond 64GB, you can no longer use what is categorized as a personal computer but will require a full-blown server which brings you into very expensive computing territory.

It is also important to understand that the amount of RAM you need is not only affected by the amount of data you have, but also by the number of people simultaneously querying it. Having 5-10 people using the same in-memory BI application could easily double the amount of RAM required for intermediate calculations that need to be performed to generate the query results. A key success factor in most BI solutions is having a large number of users, so you need to tread carefully when considering in-memory technology for real-world BI. Otherwise, your hardware costs may spiral beyond what you are willing or able to spend (today, or in the future as your needs increase).

There are other implications to having your data model stored in memory, such as having to re-load it from disk to RAM every time the computer reboots and not being able to use the computer for anything other than the particular data model you’re using because its RAM is all used up.

A Note about QlikView and PowerPivot In-memory Technologies
QlikTech is the most active in-memory BI player out there so their QlikView in-memory technology is worth addressing in its own right. It has been repeatedly described as “unique, patented associative technology” but, in fact, there is nothing “associative” about QlikView’s in-memory technology. QlikView uses a simple tabular data model, stored entirely in-memory, with basic token-based compression applied to it. In QlikView’s case, the word associative relates to the functionality of its user interface, not how the data model is physically stored. Associative databases are a completely different beast and have nothing in common with QlikView’s technology.

PowerPivot uses a similar concept, but is engineered somewhat differently due to the fact it’s meant to be used largely within Excel. In this respect, PowerPivot relies on a columnar approach to storage that is better suited for the types of calculations conducted in Excel 2010, as well as for compression. Quality of compression is a significant differentiator between in-memory technologies as better compression means that you can store more data in the same amount RAM (i.e., more data is available for users to query). In its current version, however, PowerPivot is still very limited in the amounts of data it supports and requires a ridiculous amount of RAM.

The Present and Future Technologies
The destiny of BI lies in technologies that leverage the respective benefits of both disk-based and in-memory technologies to deliver fast query responses and extensive multi-user access without monstrous hardware requirements. Obviously, these technologies cannot be based on relational databases, but they must also not be designed to assume a massive amount of RAM, which is a very scarce resource.

These types of technologies are not theoretical anymore and are already utilized by businesses worldwide. Some are designed to distribute different portions of complex queries across multiple cheaper computers (this is a good option for cloud-based BI systems) and some are designed to take advantage of 21st-century hardware (multi-core architectures, upgraded CPU cache sizes, etc.) to extract more juice from off-the-shelf computers.

A Final Note: ElastiCube Technology
The technology developed by the company I co-founded, SiSense, belongs to the latter category. That is, SiSense utilizes technology which combines the best of disk-based and in-memory solutions, essentially eliminating the downsides of each. SiSense’s BI product, Prism, enables a standard PC to deliver a much wider variety of BI solutions, even when very large amounts of data, large numbers of users and/or large numbers of data sources are involved, as is the case in typical BI projects.

When we began our research at SiSense, our technological assumption was that it is possible to achieve in-memory-class query response times, even for hundreds of users simultaneously accessing massive data sets, while keeping the data (mostly) stored on disk. The result of our hybrid disk-based/in-memory technology is a BI solution based on what we now call ElastiCube, after which this blog is named. You can read more about this technological approach, which we call Just-in-Time In-memory Processing, at our BI Software Evolved technology page.

More Stories By Elad Israeli

Elad Israeli is co-founder of business intelligence software company, SiSense. SiSense has developed Prism, a next-generation business intelligence platform based on its own, unique ElastiCube BI technology. Elad is responsible for driving the vision and strategy of SiSense’s unique BI products. Before co-founding SiSense, Elad served as a Product Manager at global IT services firm Ness Technologies (NASDAQ: NSTC). Previously, Elad was a Product Manager at Anysoft and, before that, he co-founded and led technology development at BiSense, a BI technology company.

Cloud Expo Breaking News
More and more enterprises today are doing business by opening up their data and applications through APIs. Though forward-thinking and strategic, exposing APIs also increases the surface area for potential attack by hackers. To benefit from APIs while staying secure, enterprises and security architects need to continue to develop a deep understanding about API security and how it differs from traditional web application security or mobile application security. In his session at 14th Cloud Expo, Sachin Agarwal, VP of Product Marketing and Strategy at SOA Software, will walk you through the various aspects of how an API could be potentially exploited. He will discuss the necessary best practices to secure your data and enterprise applications while continue continuing to support your business’s digital initiatives.
Web conferencing in a public cloud has the same risks as any other cloud service. If you have ever had concerns over the types of data being shared in your employees’ web conferences, such as IP, financials or customer data, then it’s time to look at web conferencing in a private cloud. In her session at 14th Cloud Expo, Courtney Behrens, Senior Marketing Manager at Brother International, will discuss how issues that had previously been out of your control, like performance, advanced administration and compliance, can now be put back behind your firewall.
Next-Gen Cloud. Whatever you call it, there’s a higher calling for cloud computing that requires providers to change their spots and move from a commodity mindset to a premium one. Businesses can no longer maintain the status quo that today’s service providers offer. Yes, the continuity, speed, mobility, data access and connectivity are staples of the cloud and always will be. But cloud providers that plan to not only exist tomorrow – but to lead – know that security must be the top priority for the cloud and are delivering it now. In his session at 14th Cloud Expo, Kurt Hagerman, Chief Information Security Officer at FireHost, will detail why and how you can have both infrastructure performance and enterprise-grade security – and what tomorrow's cloud provider will look like.
The social media expansion has shown just how people are eager to share their experiences with the rest of the world. Cloud technology is the perfect platform to satisfy this need given its great flexibility and readiness. At Cynny, we aim to revolutionize how people share and organize their digital life through a brand new cloud service, starting from infrastructure to the users’ interface. A revolution that began from inventing and designing our very own infrastructure: we have created the first server network powered solely by ARM CPU. The microservers have “organism-like” features, differentiating them from any of the current technologies. Benefits include low consumption of energy, making Cynny the ecologically friendly alternative for storage as well as cheaper infrastructure, lower running costs, etc.
The revolution that happened in the server universe over the past 15 years has resulted in an eco-system that is more open, more democratically innovative and produced better results in technically challenging dimensions like scale. The underpinnings of the revolution were common hardware, standards based APIs (ex. POSIX) and a strict adherence to layering and isolation between applications, daemons and kernel drivers/modules which allowed multiple types of development happen in parallel without hindering others. Put simply, today's server model is built on a consistent x86 platform with few surprises in its core components. A kernel abstracts away the platform, so that applications and daemons are decoupled from the hardware. In contrast, networking equipment is still stuck in the mainframe era. Today, networking equipment is a single appliance, including hardware, OS, applications and user interface come as a monolithic entity from a single vendor. Switching between different vendor'...
Cloud backup and recovery services are critical to safeguarding an organization’s data and ensuring business continuity when technical failures and outages occur. With so many choices, how do you find the right provider for your specific needs? In his session at 14th Cloud Expo, Daniel Jacobson, Technology Manager at BUMI, will outline the key factors including backup configurations, proactive monitoring, data restoration, disaster recovery drills, security, compliance and data center resources. Aside from the technical considerations, the secret sauce in identifying the best vendor is the level of focus, expertise and specialization of their engineering team and support group, and how they monitor your day-to-day backups, provide recommendations, and guide you through restores when necessary.
Cloud scalability and performance should be at the heart of every successful Internet venture. The infrastructure needs to be resilient, flexible, and fast – it’s best not to get caught thinking about architecture until the middle of an emergency, when it's too late. In his interactive, no-holds-barred session at 14th Cloud Expo, Phil Jackson, Development Community Advocate for SoftLayer, will dive into how to design and build-out the right cloud infrastructure.
You use an agile process; your goal is to make your organization more agile. What about your data infrastructure? The truth is, today’s databases are anything but agile – they are effectively static repositories that are cumbersome to work with, difficult to change, and cannot keep pace with application demands. Performance suffers as a result, and it takes far longer than it should to deliver on new features and capabilities needed to make your organization competitive. As your application and business needs change, data repositories and structures get outmoded rapidly, resulting in increased work for application developers and slow performance for end users. Further, as data sizes grow into the Big Data realm, this problem is exacerbated and becomes even more difficult to address. A seemingly simple schema change can take hours (or more) to perform, and as requirements evolve the disconnect between existing data structures and actual needs diverge.
SYS-CON Events announced today that SherWeb, a long-time leading provider of cloud services and Microsoft's 2013 World Hosting Partner of the Year, will exhibit at SYS-CON's 14th International Cloud Expo®, which will take place on June 10–12, 2014, at the Javits Center in New York City, New York. A worldwide hosted services leader ranking in the prestigious North American Deloitte Technology Fast 500TM, and Microsoft's 2013 World Hosting Partner of the Year, SherWeb provides competitive cloud solutions to businesses and partners around the world. Founded in 1998, SherWeb is a privately owned company headquartered in Quebec, Canada. Its service portfolio includes Microsoft Exchange, SharePoint, Lync, Dynamics CRM and more.
The world of cloud and application development is not just for the hardened developer these days. In their session at 14th Cloud Expo, Phil Jackson, Development Community Advocate for SoftLayer, and Harold Hannon, Sr. Software Architect at SoftLayer, will pull back the curtain of the architecture of a fun demo application purpose-built for the cloud. They will focus on demonstrating how they leveraged compute, storage, messaging, and other cloud elements hosted at SoftLayer to lower the effort and difficulty of putting together a useful application. This will be an active demonstration and review of simple command-line tools and resources, so don’t be afraid if you are not a seasoned developer.
SYS-CON Events announced today that BUMI, a premium managed service provider specializing in data backup and recovery, will exhibit at SYS-CON's 14th International Cloud Expo®, which will take place on June 10–12, 2014, at the Javits Center in New York City, New York. Manhattan-based BUMI (Backup My Info!) is a premium managed service provider specializing in data backup and recovery. Founded in 2002, the company’s Here, There and Everywhere data backup and recovery solutions are utilized by more than 500 businesses. BUMI clients include professional service organizations such as banking, financial, insurance, accounting, hedge funds and law firms. The company is known for its relentless passion for customer service and support, and has won numerous awards, including Customer Service Provider of the Year and 10 Best Companies to Work For.
Chief Security Officers (CSO), CIOs and IT Directors are all concerned with providing a secure environment from which their business can innovate and customers can safely consume without the fear of Distributed Denial of Service attacks. To be successful in today's hyper-connected world, the enterprise needs to leverage the capabilities of the web and be ready to innovate without fear of DDoS attacks, concerns about application security and other threats. Organizations face great risk from increasingly frequent and sophisticated attempts to render web properties unavailable, and steal intellectual property or personally identifiable information. Layered security best practices extend security beyond the data center, delivering DDoS protection and maintaining site performance in the face of fast-changing threats.
From data center to cloud to the network. In his session at 3rd SDDC Expo, Raul Martynek, CEO of Net Access, will identify the challenges facing both data center providers and enterprise IT as they relate to cross-platform automation. He will then provide insight into designing, building, securing and managing the technology as an integrated service offering. Topics covered include: High-density data center design Network (and SDN) integration and automation Cloud (and hosting) infrastructure considerations Monitoring and security Management approaches Self-service and automation
In his session at 14th Cloud Expo, David Holmes, Vice President at OutSystems, will demonstrate the immense power that lives at the intersection of mobile apps and cloud application platforms. Attendees will participate in a live demonstration – an enterprise mobile app will be built and changed before their eyes – on their own devices. David Holmes brings over 20 years of high-tech marketing leadership to OutSystems. Prior to joining OutSystems, he was VP of Global Marketing for Damballa, a leading provider of network security solutions. Previously, he was SVP of Global Marketing for Jacada where his branding and positioning expertise helped drive the company from start-up days to a $55 million initial public offering on Nasdaq.
Performance is the intersection of power, agility, control, and choice. If you value performance, and more specifically consistent performance, you need to look beyond simple virtualized compute. Many factors need to be considered to create a truly performant environment. In his General Session at 14th Cloud Expo, Marc Jones, Vice President of Product Innovation for SoftLayer, will explain how to take advantage of a multitude of compute options and platform features to make cloud the cornerstone of your online presence.