Welcome!

AJAX & REA Authors: Rajesh Lain, Sebastian Kruk, RealWire News Distribution, Harald Zeitlhofer

Related Topics: SOA & WOA

SOA & WOA: Article

In-Memory BI Is Not the Future, It’s the Past

Why the current in-memory BI hype can be misleading.

In recent times, one of the most popular subjects related to the field of Business Intelligence (BI) has been In-memory BI technology. The subject gained popularity largely due to the success of QlikTech, provider of the in-memory-based QlikView BI product. Following QlikTech’s lead, many other BI vendors have jumped on the in-memory “hype wagon,” including the software giant, Microsoft, which has been aggressively marketing PowerPivot, their own in-memory database engine.

The increasing hype surrounding in-memory BI has caused BI consultants, analysts and even vendors to spew out endless articles, blog posts and white papers on the subject, many of which have also gone the extra mile to describe in-memory technology as the future of business intelligence, the death blow to the data warehouse and the swan song of OLAP technology. I find one of these in my inbox every couple of weeks.

Just so it is clear - the concept of in-memory business intelligence is not new. It has been around for many years. The only reason it became widely known recently is because it wasn’t feasible before 64-bit computing became commonly available. Before 64-bit processors, the maximum amount of RAM a computer could utilize was barely 4GB, which is hardly enough to accommodate even the simplest of multi-user BI solutions. Only when 64-bit systems became cheap enough did it became possible to consider in-memory technology as a practical option for BI.

The success of QlikTech and the relentless activities of Microsoft’s marketing machine have managed to confuse many in terms of what role in-memory technology plays in BI implementations. And that is why many of the articles out there, which are written by marketers or market analysts who are not proficient in the internal workings of database technology (and assume their readers aren’t either), are usually filled with inaccuracies and, in many cases, pure nonsense.

The purpose of this article is to put both in-memory and disk-based BI technologies in perspective, explain the differences between them and finally lay out, in simple terms, why disk-based BI technology isn’t on its way to extinction. Rather, disk-based BI technology is evolving into something that will significantly limit the use of in-memory technology in typical BI implementations.

But before we get to that, for the sake of those who are not very familiar with in-memory BI technology, here’s a brief introduction to the topic.

Disk and RAM
Generally speaking, your computer has two types of data storage mechanisms – disk (often called a hard disk) and RAM (random access memory). The important differences between them (for this discussion) are outlined in the following table:

Disk RAM
Abundant Scarce
Slower Faster
Cheap Expensive
Long-term Short-term

Most modern computers have 15-100 times more available disk storage than they do RAM. My laptop, for example, has 8GB of RAM and 300GB of available disk space. However, reading data from disk is much slower than reading the same data from RAM. This is one of the reasons why 1GB of RAM costs approximately 320 times that of 1GB of disk space.

Another important distinction is what happens to the data when the computer is powered down: data stored on disk is unaffected (which is why your saved documents are still there the next time you turn on your computer), but data residing in RAM is instantly lost. So, while you don’t have to re-create your disk-stored Microsoft Word documents after a reboot, you do have to re-load the operating system, re-launch the word processor and reload your document. This is because applications and their internal data are partly, if not entirely, stored in RAM while they are running.

Disk-based Databases and In-memory Databases
Now that we have a general idea of what the basic differences between disk and RAM are, what are the differences between disk-based and in-memory databases? Well, all data is always kept on hard disks (so that they are saved even when the power goes down). When we talk about whether a database is disk-based or in-memory, we are talking about where the data resides while it is actively being queried by an application: with disk-based databases, the data is queried while stored on disk and with in-memory databases, the data being queried is first loaded into RAM.

Disk-based databases are engineered to efficiently query data residing on the hard drive. At a very basic level, these databases assume that the entire data cannot fit inside the relatively small amount of RAM available and therefore must have very efficient disk reads in order for queries to be returned within a reasonable time frame. The engineers of such databases have the benefit of unlimited storage, but must face the challenges of relying on relatively slow disk operations.

On the other hand, in-memory databases work under the opposite assumption that the data can, in fact, fit entirely inside the RAM. The engineers of in-memory databases benefit from utilizing the fastest storage system a computer has (RAM), but have much less of it at their disposal.

That is the fundamental trade-off in disk-based and in-memory technologies: faster reads and limited amounts of data versus slower reads and practically unlimited amounts of data. These are two critical considerations for business intelligence applications, as it is important both to have fast query response times and to have access to as much data as possible.

The Data Challenge
A business intelligence solution (almost) always has a single data store at its center. This data store is usually called a database, data warehouse, data mart or OLAP cube. This is where the data that can be queried by the BI application is stored.

The challenges in creating this data store using traditional disk-based technologies is what gave in-memory technology its 15 minutes (ok, maybe 30 minutes) of fame. Having the entire data model stored inside RAM allowed bypassing some of the challenges encountered by their disk-based counterparts, namely the issue of query response times or ‘slow queries.’

Disk-based BI
When saying ‘traditional disk-based’ technologies, we typically mean relational database management systems (RDBMS) such as SQL Server, Oracle, MySQL and many others. It’s true that having a BI solution perform well using these types of databases as their backbone is far more challenging than simply shoving the entire data model into RAM, where performance gains would be immediate due to the fact RAM is so much faster than disk.

It’s commonly thought that relational databases are too slow for BI queries over data in (or close to) its raw form due to the fact they are disk-based. The truth is, however, that it’s because of how they use the disk and how often they use it.

Relational databases were designed with transactional processing in mind. But having a database be able to support high-performance insertions and updates of transactions (i.e., rows in a table) as well as properly accommodating the types of queries typically executed in BI solutions (e.g., aggregating, grouping, joining) is impossible. These are two mutually-exclusive engineering goals, that is to say they require completely different architectures at the very core. You simply can’t use the same approach to ideally achieve both.

In addition, the standard query language used to extract transactions from relational databases (SQL) is syntactically designed for the efficient fetching of rows, while rare are the cases in BI where you would need to scan or retrieve an entire row of data. It is nearly impossible to formulate an efficient BI query using SQL syntax.

So while relational databases are great as the backbone of operational applications such as CRM, ERP or Web sites, where transactions are frequently and simultaneously inserted, they are a poor choice for supporting analytic applications which usually involve simultaneous retrieval of partial rows along with heavy calculations.

In-memory BI
In-memory databases approach the querying problem by loading the entire dataset into RAM. In so doing, they remove the need to access the disk to run queries, thus gaining an immediate and substantial performance advantage (simply because scanning data in RAM is orders of magnitude faster than reading it from disk). Some of these databases introduce additional optimizations which further improve performance. Most of them also employ compression techniques to represent even more data in the same amount of RAM.

Regardless of what fancy footwork is used with an in-memory database, storing the entire dataset in RAM has a serious implication: the amount of data you can query with in-memory technology is limited by the amount of free RAM available, and there will always be much less available RAM than available disk space.

The bottom line is that this limited memory space means that the quality and effectiveness of your BI application will be hindered: the more historical data to which you have access and/or the more fields you can query, the better analysis, insight and, well, intelligence you can get.

You could add more and more RAM, but then the hardware you require becomes exponentially more expensive. The fact that 64-bit computers are cheap and can theoretically support unlimited amounts of RAM does not mean they actually do in practice. A standard desktop-class (read: cheap) computer with standard hardware physically supports up to 12GB of RAM today. If you need more, you can move on to a different class of computer which costs about twice as much and will allow you up to 64GB. Beyond 64GB, you can no longer use what is categorized as a personal computer but will require a full-blown server which brings you into very expensive computing territory.

It is also important to understand that the amount of RAM you need is not only affected by the amount of data you have, but also by the number of people simultaneously querying it. Having 5-10 people using the same in-memory BI application could easily double the amount of RAM required for intermediate calculations that need to be performed to generate the query results. A key success factor in most BI solutions is having a large number of users, so you need to tread carefully when considering in-memory technology for real-world BI. Otherwise, your hardware costs may spiral beyond what you are willing or able to spend (today, or in the future as your needs increase).

There are other implications to having your data model stored in memory, such as having to re-load it from disk to RAM every time the computer reboots and not being able to use the computer for anything other than the particular data model you’re using because its RAM is all used up.

A Note about QlikView and PowerPivot In-memory Technologies
QlikTech is the most active in-memory BI player out there so their QlikView in-memory technology is worth addressing in its own right. It has been repeatedly described as “unique, patented associative technology” but, in fact, there is nothing “associative” about QlikView’s in-memory technology. QlikView uses a simple tabular data model, stored entirely in-memory, with basic token-based compression applied to it. In QlikView’s case, the word associative relates to the functionality of its user interface, not how the data model is physically stored. Associative databases are a completely different beast and have nothing in common with QlikView’s technology.

PowerPivot uses a similar concept, but is engineered somewhat differently due to the fact it’s meant to be used largely within Excel. In this respect, PowerPivot relies on a columnar approach to storage that is better suited for the types of calculations conducted in Excel 2010, as well as for compression. Quality of compression is a significant differentiator between in-memory technologies as better compression means that you can store more data in the same amount RAM (i.e., more data is available for users to query). In its current version, however, PowerPivot is still very limited in the amounts of data it supports and requires a ridiculous amount of RAM.

The Present and Future Technologies
The destiny of BI lies in technologies that leverage the respective benefits of both disk-based and in-memory technologies to deliver fast query responses and extensive multi-user access without monstrous hardware requirements. Obviously, these technologies cannot be based on relational databases, but they must also not be designed to assume a massive amount of RAM, which is a very scarce resource.

These types of technologies are not theoretical anymore and are already utilized by businesses worldwide. Some are designed to distribute different portions of complex queries across multiple cheaper computers (this is a good option for cloud-based BI systems) and some are designed to take advantage of 21st-century hardware (multi-core architectures, upgraded CPU cache sizes, etc.) to extract more juice from off-the-shelf computers.

A Final Note: ElastiCube Technology
The technology developed by the company I co-founded, SiSense, belongs to the latter category. That is, SiSense utilizes technology which combines the best of disk-based and in-memory solutions, essentially eliminating the downsides of each. SiSense’s BI product, Prism, enables a standard PC to deliver a much wider variety of BI solutions, even when very large amounts of data, large numbers of users and/or large numbers of data sources are involved, as is the case in typical BI projects.

When we began our research at SiSense, our technological assumption was that it is possible to achieve in-memory-class query response times, even for hundreds of users simultaneously accessing massive data sets, while keeping the data (mostly) stored on disk. The result of our hybrid disk-based/in-memory technology is a BI solution based on what we now call ElastiCube, after which this blog is named. You can read more about this technological approach, which we call Just-in-Time In-memory Processing, at our BI Software Evolved technology page.

More Stories By Elad Israeli

Elad Israeli is co-founder of business intelligence software company, SiSense. SiSense has developed Prism, a next-generation business intelligence platform based on its own, unique ElastiCube BI technology. Elad is responsible for driving the vision and strategy of SiSense’s unique BI products. Before co-founding SiSense, Elad served as a Product Manager at global IT services firm Ness Technologies (NASDAQ: NSTC). Previously, Elad was a Product Manager at Anysoft and, before that, he co-founded and led technology development at BiSense, a BI technology company.

Cloud Expo Latest Stories
Come learn about what you need to consider when moving your data to the cloud. In her session at 15th Cloud Expo, Skyla Loomis, a Program Director of Cloudant Development at Cloudant, will discuss the security, performance, and operational implications of keeping your data on premise, moving it to the cloud, or taking a hybrid approach. She will use real customer examples to illustrate the tradeoffs, key decision points, and how to be successful with a cloud or hybrid cloud solution.
In today's application economy, enterprise organizations realize that it's their applications that are the heart and soul of their business. If their application users have a bad experience, their revenue and reputation are at stake. In his session at 15th Cloud Expo, Anand Akela, Senior Director of Product Marketing for Application Performance Management at CA Technologies, will discuss how a user-centric Application Performance Management solution can help inspire your users with every application transaction.
With the explosion of the cloud, more businesses are transitioning to a recurring revenue model to generate reliable sales, grow profits, and open new markets. This opportunity requires businesses to get to market quickly with the pricing and packaging options customers want. In addition, you will want to take advantage of the ensuing tidal wave of data to more effectively upsell, cross-sell and manage your customers. All of this is possible, but only with the right approach. At 15th Cloud Expo, Brendan O'Brien, Co-founder at Aria Systems and the inventor of cloud billing panelists, will lead a panel discussion on what it takes to launch and manage a successful recurring revenue business. The panelists will offer their insights about what each department will need to consider, from financial management to line of business and IT. The panelists will also offer examples from their success in recurring revenue with companies such as Audi, Constant Contact, Experian, Pitney-Bowes, Teleko...
Planning scalable environments isn't terribly difficult, but it does require a change of perspective. In his session at 15th Cloud Expo, Phil Jackson, Development Community Advocate for SoftLayer, will broaden your views to think on an Internet scale by dissecting a video publishing application built with The SoftLayer Platform, Message Queuing, Object Storage, and Drupal. By examining a scalable modular application build that can handle unpredictable traffic, attendees will able to grow your development arsenal and pick up a few strategies to apply to your own projects.
The cloud provides an easy onramp to building and deploying Big Data solutions. Transitioning from initial deployment to large-scale, highly performant operations may not be as easy. In his session at 15th Cloud Expo, Harold Hannon, Sr. Software Architect at SoftLayer, will discuss the benefits, weaknesses, and performance characteristics of public and bare metal cloud deployments that can help you make the right decisions.
Over the last few years the healthcare ecosystem has revolved around innovations in Electronic Health Record (HER) based systems. This evolution has helped us achieve much desired interoperability. Now the focus is shifting to other equally important aspects – scalability and performance. While applying cloud computing environments to the EHR systems, a special consideration needs to be given to the cloud enablement of Veterans Health Information Systems and Technology Architecture (VistA), i.e., the largest single medical system in the United States.
Cloud and Big Data present unique dilemmas: embracing the benefits of these new technologies while maintaining the security of your organization’s assets. When an outside party owns, controls and manages your infrastructure and computational resources, how can you be assured that sensitive data remains private and secure? How do you best protect data in mixed use cloud and big data infrastructure sets? Can you still satisfy the full range of reporting, compliance and regulatory requirements? In his session at 15th Cloud Expo, Derek Tumulak, Vice President of Product Management at Vormetric, will discuss how to address data security in cloud and Big Data environments so that your organization isn’t next week’s data breach headline.
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
Is your organization struggling to deal with skyrocketing volumes of digital assets? The amount of data is growing exponentially and organizations are having a hard time managing this growth. In his session at 15th Cloud Expo, Amar Kapadia, Senior Director of Open Cloud Strategy at Seagate, will walk through the essential considerations when developing a cloud storage strategy. In this discussion, you will understand the challenges IT is facing, why companies need to move to cloud, and how the right cloud model can help your business economically overcome the data struggle.
If cloud computing benefits are so clear, why have so few enterprises migrated their mission-critical apps? The answer is often inertia and FUD. No one ever got fired for not moving to the cloud – not yet. In his session at 15th Cloud Expo, Michael Hoch, SVP, Cloud Advisory Service at Virtustream, will discuss the six key steps to justify and execute your MCA cloud migration.
The 16th International Cloud Expo announces that its Call for Papers is now open. 16th International Cloud Expo, to be held June 9–11, 2015, at the Javits Center in New York City brings together Cloud Computing, APM, APIs, Security, Big Data, Internet of Things, DevOps and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit your speaking proposal today!
Most of today’s hardware manufacturers are building servers with at least one SATA Port, but not every systems engineer utilizes them. This is considered a loss in the game of maximizing potential storage space in a fixed unit. The SATADOM Series was created by Innodisk as a high-performance, small form factor boot drive with low power consumption to be plugged into the unused SATA port on your server board as an alternative to hard drive or USB boot-up. Built for 1U systems, this powerful device is smaller than a one dollar coin, and frees up otherwise dead space on your motherboard. To meet the requirements of tomorrow’s cloud hardware, Innodisk invested internal R&D resources to develop our SATA III series of products. The SATA III SATADOM boasts 500/180MBs R/W Speeds respectively, or double R/W Speed of SATA II products.
SYS-CON Events announced today that Gridstore™, the leader in software-defined storage (SDS) purpose-built for Windows Servers and Hyper-V, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Gridstore™ is the leader in software-defined storage purpose built for virtualization that is designed to accelerate applications in virtualized environments. Using its patented Server-Side Virtual Controller™ Technology (SVCT) to eliminate the I/O blender effect and accelerate applications Gridstore delivers vmOptimized™ Storage that self-optimizes to each application or VM across both virtual and physical environments. Leveraging a grid architecture, Gridstore delivers the first end-to-end storage QoS to ensure the most important App or VM performance is never compromised. The storage grid, that uses Gridstore’s performance optimized nodes or capacity optimized nodes, starts with as few a...
SYS-CON Events announced today that Cloudian, Inc., the leading provider of hybrid cloud storage solutions, has been named “Bronze Sponsor” of SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Cloudian is a Foster City, Calif.-based software company specializing in cloud storage. Cloudian HyperStore® is an S3-compatible cloud object storage platform that enables service providers and enterprises to build reliable, affordable and scalable hybrid cloud storage solutions. Cloudian actively partners with leading cloud computing environments including Amazon Web Services, Citrix Cloud Platform, Apache CloudStack, OpenStack and the vast ecosystem of S3 compatible tools and applications. Cloudian's customers include Vodafone, Nextel, NTT, Nifty, and LunaCloud. The company has additional offices in China and Japan.
SYS-CON Events announced today that TechXtend (formerly Programmer’s Paradise), a leading value-added provider of server and storage virtualization, and r-evolution will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. TechXtend (formerly Programmer’s Paradise) is a leading value-added provider of software, systems and solutions for corporations, government organizations, and academic institutions across the United States and Canada. TechXtend is the Exclusive Reseller in the United States for r-evolution